AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation, Deemed to be University, Salem, Tamil Nadu, India) (AICTE APPROVED AND NAAC ACCREDITED)

Faculty of Engineering and Technology

REGULATIONS 2017 Programme:

B.E / B.Tech - MECHATRONICS

Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS)

CURRICULUM AND SYLLABUS

(Semester I to VIII)

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
DOQ	need for sustainable development.
P08	norms of the engineering practice
PO9	Individual and team work: Function effectively as an individual and as a member or leader
10,	in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO12	Life long learning: Researing the need for and have the properties and chility to an age in
P012	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Mechatronics Engineering programme will be able to:

PSO1	Have a strong foundation in science and focus in mechanical, electronics, control, software
	and computer engineering, and a solid command of the newest technologies.
PSO2	Be able to design, analyze, and test "intelligent" products and processes that incorporate
	appropriate computing tools, sensors, and actuators.
PSO3	Be able to work efficiently in multidisciplinary teams.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	The Programme will prepare graduates to synergistically integrate mechanical engineering
	with electronic and intelligent computer control in the design and manufacture of industrial
	products and processes.
PEO2	The Programme will prepare graduates with strong team skills to solve multidisciplinary
	problems using Mechatronics approach.
PEO3	The Programme will prepare graduates with an understanding of their ethical and
	social responsibility.

Credit Requirement for the Course Categories

Sl. No.	Category of Courses	Credits to be earned Min – Max.
	A. Foundation Courses (FC)	54 - 81
01	i. Humanities and Sciences (English and Management Courses)	12 - 21
01	ii. Basic Sciences (Maths, Physics and Chemistry Courses)	24 - 33
	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen Programme of	81
02	study.	
	C. Elective Courses (EC)	18 - 24
03	i. Programme Specific (Class Room or Online)	12 - 15
	ii. Open Elective (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
04	ii. Internship	3
	iii. Industry Supported Courses	6
	 **E. Employability Enhancement Courses + Co - Curricular Courses + Extra Curricular Courses 	9 - 18
	i. Employability Enhancement Courses (Personality	3 - 6
0.5	Development Training, Participation in Seminars,	
05	Professional Practices, Summer Project, Case Study etc.)	
	ii. Co - Curricular Courses (NCC, NSS, Sports, Games, Drills	3 - 6
	and Physical Exercises)	
	iii. Extra Curricular Courses	3 - 6
	Minimum Credits to be earned	180
** - N CGP 171 c	<i>Aandatory, Credits would be mentioned in Mark sheets but not inc</i> A Calculations. For overall CGPA calculations, a student has to ear redits in Categories A to D.	luded for 'n minimum

CURRICULUM

B.E / B.Tech. - MECHATRONICS

SEMESTER I TO VIII

	B.E / B.TECH. – MECHATRONICS - SEMESTER I TO VIII										
	CATEGORY	A – FOUNDATION COUL	RSES - HSS, BS A	ND ES COUI	RSES -	CRE	DITS (54-81)			
	(i) HUMA	NITIES AND SCIENCES (ENG	LISH AND MANAGE	MENT SUBJECT	ГS) - CR	EDITS	(12 - 21)				
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISI TE		
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC(HSS)	3	0	0	3	NIL		
2.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC(HSS)	3	0	0	3	NIL		
3.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC(HSS)	0	0	4	2	NIL		
4.	17YMHS82	YOGA & MEDITATION	PHYSICAL EDUCATION	FC(HSS)	0	0	4	2	NIL		
5.	17MBHS 07	PROFESSIONAL ETHICS AND HUMAN VALUES	MANAGEMENT	FC(HSS)	3	0	0	3	NIL		
6.	17MB HS 02	FINANCE AND ACCOUNTING FOR ENGINEERS	MANAGEMENT	FC(HSS)	3	0	0	3	NIL		
(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS) - CREDITS (24 - 33)											
1.	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC(BS)	2	2	0	3	NIL		
2.	17MABS06	DIFFERENTIAL EQUATIONS AND TRANSFORMS	MATHEMATICS	FC(BS)	2	2	0	3	ENGINEERING MATHEMATICS		
3.	17MABS10	PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	MATHEMATICS	FC(BS)	2	2	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS		
4.	17MABS16	NUMERICAL METHODS	MATHEMATICS	FC(BS)	2	2	0	3	ENGINEERING MATHEMATICS		
5.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC(BS)	4	0	0	4	NIL		
6.	17PHBS05	SMART MATERIALS	PHYSICS	FC(BS)	3	0	0	3	NIL		
7.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC(BS)	3	0	0	3	NIL		
8.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC(BS)	0	0	4	2	NIL		
		(iii) ENGINEERING SCIENCE	S (BASIC ENGINEER	RING COURSES) - CRE	DITS (18	8 - 27)				
1.	17CSES01	ESSENTIALS OF COMPUTING (Theory + Practice)	CSE	FC(ES)	2	0	2	3	NIL		
2.	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	4	0	0	4	NIL		
3.	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL		
4.	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL		
5.	17CMES81	ENGINEERING SKILLS PRACTICE LAB A. BASIC CIVIL ENGINEERING B. BASIC MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	0	0	4	2	NIL		
6.	17EEES82	ENGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING B. BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2	NIL		
7.	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL		
8.	17MEES84	ENGINEERING GRAPHICS (Theory + Practice)	MECHANICAL	FC(ES)	1	0	4	3	NIL		

	CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (81)											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISITE			
1	17EECC01	ELECTRIC CIRCUIT ANALYSIS	EEE	CC	3	0	0	3	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING			
2	17MECC06	KINEMATICS OF MACHINES	MECHANICAL	CC	3	0	0	3	NIL			
3	17ECCC01	SEMICONDUCTOR DEVICES	ECE	CC	3	0	0	3	NIL			
4	17CVCC32	FLUID MECHANICS AND STRENGTH OF MATERIALS	CIVIL	CC	3	0	0	3	NIL			
5	17MECC03	ENGINEERING MECHANICS	MECHANICAL	CC	3	0	0	3	NIL			
6	17MECC08	DYNAMICS OF MACHINES	MECHANICAL	CC	3	0	0	3	KINEMATICS OF MACHINES			
7	17ECCC05	DIGITAL LOGIC CIRCUIT & DESIGN	ECE	CC	3	0	0	3	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING			
8	17MECC18	MANUFACTURING ENGINEERING	MECHANICAL	CC	3	0	0	3	NIL			
9	17MECC09	DESIGN OF MACHINE ELEMENTS	MECHANICAL	CC	3	0	0	3	STRENGTH OF MATERIALS			
10	17EECC16	POWER ELECTRONICS AND DRIVES	EEE	CC	3	0	0	3	NIL			
11	17ECCC10	LINEAR INTEGRATED CIRCUITS	ECE	CC	3	0	0	3	SEMICONDUCTOR DEVICES			
12	17ECCC23	SENSORS AND ELECTRONIC MEASUREMENTS	ECE	CC	3	0	0	3	NIL			
13	17ECCC07	MICROCONTROLLERS & ITS APPLICATIONS	ECE	CC	3	0	0	3	NIL			
14	17EECC08	CONTROL SYSTEMS	EEE	СС	3	0	0	3	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING			
15	17MTCC01	PROGRAMMABLE LOGIC CONTROLLERS(THEORY & PRACTICE)	MECHATRONICS	CC	2	0	2	3	NIL			
16	17ECEC20	ROBOTICS AND AUTOMATION	ECE	CC	3	0	0	3	NIL			
17	17MECC12	COMPUTER INTEGRATED MANUFACTURING	MECHANICAL	CC	3	0	0	3	NIL			
18	17MECC15	FINITE ELEMENT ANALYSIS	MECHANICAL	CC	3	0	0	3	STRENGTH OF MATERIALS			
19	17MEEC01	HYDRAULICS AND PNEUMATIC SYSTEMS	MECHANICAL	CC	3	0	0	3	NIL			
20	17EECC81	ELECTRIC CIRCUITS LAB	EEE	CC	0	0	4	2	NIL			
21	17CVCC92	FLUID MECHANICS AND STRENGTH OF MATERIALS LAB	CIVIL	CC	0	0	4	2	NIL			
22	17ECCC81	SEMICONDUCTOR DEVICES LAB	ECE	CC	0	0	4	2	NIL			
23	17ECCC82	DIGITAL LOGIC CIRCUIT & DESIGN LAB	ECE	CC	0	0	4	2	NIL			
24	17MECC92	DYNAMICS LAB	MECHANICAL	CC	0	0	4	2	NIL			
25	17EECC87	CONTROL SYSTEMS LAB	EEE	CC	0	0	4	2	NIL			
26	17ECCC96	SENSORS AND ELECTRONIC MEASUREMENTS LAB	ECE	CC	0	0	4	2	NIL			
27	17ECCC95	MICROCONTROLLERS LAB	ECE	CC	0	0	4	2	NIL			
28	17MTCC81	PROGRAMMABLE LOGIC CONTROLLERS LAB	MECHATRONICS	CC	0	0	4	2	NIL			
29	17MECC88	COMPUTER INTEGRATED MANUFACTURING LAB	MECHANICAL	CC	0	0	4	2	NIL			

30	17MTCC82	ROBOTICS LAB	MECHATRONICS	CC	0	0	4	2	NIL
31	17MECC93	HYDRAULICS AND PNEUMATIC SYSTEMS LAB	MECHANICAL	CC	0	0	4	2	NIL

B.E / B.TECH. – MECHATRONICS - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

	CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 24)										
	(i) PRC	OGRAMME SPECIFIC (C	LASS ROOM OR	ONLINE) - (CRED	ITS (12	2 - 15))			
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1.	17MTEC01	DESIGN OF MECHATRONICS SYSTEMS	MECHATRONICS	EC -PS	3	0	0	3	NIL		
2.	17EEEC07	INTELLIGENT CONTROLLERS	EEE	EC -PS	3	0	0	3	CONTROL SYSTEM		
3.	17EEEC23	PRINCIPLES OF AUTOMATIC CONTROL	EEE	EC -PS	3	0	0	3	NIL		
4.	17ECEC25	MICRO ELECTRO MECHANICAL SYSTEMS	ECE	EC -PS	3	0	0	3	NIL		
5.	17ECEC26	AVIONICS	ECE	EC -PS	3	0	0	3	NIL		
6.	17MESE10	DESIGN FOR MANUFACTURING & ASSEMBLY	MECHANICAL	EC -PS	3	0	0	3	NIL		
7.	17ECCC24	INTRODUCTION TO VLSI DESIGN	ECE	EC -PS	3	0	0	3	DIGITAL LOGIC CIRCUIT & DESIGN		
8	17ECCC15	ANALOG AND DIGITAL COMMUNICATION	ECE	EC -PS	3	0	0	3	NIL		
9	17EEPI03	VIRTUAL INSTRUMENTATION	EEE	EC -PS	3	0	0	3	NIL		
10	17ECEC27	NANO ELECTRONICS	ECE	EC -PS	3	0	0	3	SMART MATERIALS		
11	17MTEC02	LOW COST AUTOMATION	MECHATRONICS	EC -PS	3	0	0	3	ROBOTICS AND AUTOMATION		
12	17MESE16	INDUSTRIAL TRIBOLOGY	MECHANICAL	EC -PS	3	0	0	3	NIL		
13	17ECEC21	ADVANCED ROBOTICS	ECE	EC -PS	3	0	0	3	NIL		
14	17MESE17	MODERN MANUFACTURING METHODS	MECHANICAL	EC -PS	3	0	0	3	NIL		
15	17PHBS06	ENERGY PHYSICS	PHYSICS	EC -PS	3	0	0	3	NIL		
16	17CSES06	PROGRAMMING IN C	CSE	EC -PS	3	0	0	3	NIL		
17	17ECSE04	EMBEDDED SYSTEM DESIGN	ECE	EC -PS	3	0	0	3	NIL		
18	17EEEC01	ADVANCED CONTROL SYSTEM	EEE	EC -PS	3	0	0	3	CONTROL SYSTEMS		
19	17MESE42	DESIGN FOR QUALITY	MECHANICAL	EC -PS	3	0	0	3	NIL		
20	17MEEC13	INDUSTRIAL SAFETY	MECHANICAL	EC -PS	3	0	0	3	NIL		
		(ii) OPEN ELECTIVE (C	CLASS ROOM OF	R ONLINE) -	CREI	DITS (5 - 9)				
1.	17BMCC04	BIOMEDICAL INSTRUMENTATION & MEASUREMENTS.	BME	EC-OE	3	0	0	3	NIL		
2.	17MESE32	COMPOSITE MATERIALS	MECHANICAL	EC-OE	3	0	0	3	NIL		
3.	17MESE08	PRODUCT DESIGN & DEVELOPMENT	MECHANICAL	EC-OE	3	0	0	3	NIL		
4.	17MESE20	RAPID PROTOTYPING AND TOOLING	MECHANICAL	EC-OE	3	0	0	3	NIL		
5.	17MESE22	AUTOMOTIVE INFOTRONICS	MECHANICAL	EC-OE	3	0	0	3	NIL		
6.	17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EEE	EC-OE	3	0	0	3	NIL		
7.	17EECC15	ELECTRICAL TECHNOLOGY	EEE	EC-OE	3	0	0	3	Basic of Electrical & Electronics Engineering		
8.	17CSCC16	CLOUD COMPUTING	CSE	EC-OE	3	0	0	3	NIL		
9.	17CSCC09	JAVA PROGRAMMING	CSE	EC-OE	3	0	0	3	NIL		

				1	-	1	1		
10.	17CVEC08	REMOTE SENSING TECHNIQUES AND APPLICATIONS	CIVIL	EC-OE	3	0	0	3	NIL
11.	17CVEC18	WIND ENGINEERING	CIVIL	EC-OE	3	0	0	3	NIL
12.	17CSPI10	MOBILE APPLICATION DEVELOPMENT	CSE	EC-OE	3	0	0	3	NIL
13.	17CSEC34	WEB DESIGN AND MANAGEMENT	CSE	EC-OE	3	0	0	3	NIL
14.	17ATCC04	AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS	AUTO	EC-OE	3	0	0	3	NIL
15.	17CSEC09	ETHICAL HACKING	CSE	EC-OE	3	0	0	3	NIL
16.	17CSEC11	GREEN COMPUTING	CSE	EC-OE	3	0	0	3	NIL
17.	17CSEC32	VIRTUAL REALITY	CSE	EC-OE	3	0	0	3	NIL
18.	17CSCC01	DATA STRUCTURES	CSE	EC-OE	3	0	0	3	NIL
19.	17CSCC02	OBJECT ORIENTED PROGRAMMING	CSE	EC-OE	3	0	0	3	NIL
20.	17CSCC03	DATABASE MANAGEMENT SYSTEM	CSE	EC-OE	3	0	0	3	NIL
21.	17CSEC06	CRYPTOGRAPHY AND NETWORK SECURITY	CSE	EC-OE	3	0	0	3	NIL
22.	17BMEC09	DESIGN OF MEDICAL DEVICES	BME	EC-OE	3	0	0	3	NIL
23.	17BMEC02	BIOTELEMETRY	BME	EC-OE	3	0	0	3	NIL
24.	17BMEC21	MEDICAL SIMULATION IN LIFE SUPPORTING DEVICES	BME	EC-OE	3	0	0	3	NIL
25.	17BMSE07	MEDICAL RADIATION SAFETY ENGINEERING	BME	EC-OE	3	0	0	3	NIL
26.	17ATEC13	COMPUTER SIMULATION OF IC ENGINE PROCESSOR	AUTOMOBILE	EC-OE	3	0	0	3	NIL
27.	17ATEC14	COMPUTER CONTROLLED VEHICLE SYSTEMS	AUTOMOBILE	EC-OE	3	0	0	3	NIL
28.	17MESE18	METAL FORMING AND JOINING PROCESS	MECHANICAL	EC-OE	3	0	0	3	NIL
29.	17MESE19	PROCESS PLANNING AND COST ESTIMATION	MECHANICAL	EC-OE	3	0	0	3	NIL
30.	17CVEC07	DISASTER MITIGATION AND MANAGEMENT	CIVIL	EC-OE	3	0	0	3	NIL
31.	17SACC10	ENERGY CONSERVATION AND MANAGEMENT	EEE	EC-OE	3	0	0	3	NIL

	B.E / B.TECH. – MECHATRONICS - SEMESTER I TO VIII											
	CATEGORY D – PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)- CREDITS (18)											
	(i) PROJECT- CREDITS (9)											
	(i) INTERNSHIP + MINI PROJECT + INDUSTRY ELECTIVES - CREDITS (9)											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.	17MTPI01	PROJECT WORK AND VIVA VOCE	MECHATRONICS	PI	0	0	18	9	NIL			
2.	17MTPI02	MINI PROJECT	MECHATRONICS	PI	0	0	6	3	NIL			
3.	17CSPI04	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	CSE	PI	3	0	0	3	NIL			
4.	17MEPI03	NOISE VIBRATION AND HARSHNESS	MECHANICAL	PI	2	1	0	3	NIL			
5.	17MEPI04	NON DESTRUCTIVE TESTING	MECHANICAL	PI	3	0	0	3	NIL			
6.	17EEPI04	INTRODUCTION TO INDUSTRIAL INSTRUMENTATION	EEE	PI	3	0	0	3	NIL			
7.	17CSPI07	LEARNING IT ESSENTIALS BY DOING	CSE	PI	3	0	0	3	NIL			

B.E/B.TECH. – MECHATRONICS - SEMESTER I TO VIII

CATEGORY E – EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS)

	FOR COLATIONS.)									
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE	
		EMPLOYABILI	TY ENHANCEME	NT COURSE	ES (E	EC)				
1	17APEE01	PERSONALITY SKILLS DEVELOPMENT - I	MATHS	EE	2 W TRA	EEKS AININ	G OF	1	NIL	
2	17APEE02	PERSONALITY SKILLS DEVELOPMENT - II	ENGLISH & MANAGEMENT	EE	2 WEEKS OF TRAINING			1	NIL	
3	17MTEE01	TRAINING ON PLC (HANDS ON TRAINING)	MECHATRONICS	EE	0	0	4	2	NIL	
CO - CURRICULAR COURSES										
1	17APEE03	NCC	NCC	EE	2 WE TRAI NCC	2 WEEKS OF TRAINING IN NCC CAMP			NIL	
2	17APEE04	NSS	NSS	EE	2 WEEKS OF SOCIAL SER VICE IN NSS CAMP			1	NIL	
3	17APEE05	SPORTS AND GAMES (INTER –UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE					NIL	
4	17APEE06	SPORTS AND GAMES (INTRA-UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE					NIL	
5	17APEE07	SPORTS AND GAMES (STATE AND NATIONAL LEVELS)	PHYSICAL EDUCATION	EE				2	NIL	
		EXTR	A CURRICULAR	COURSES						
1.	17MTEE02	EXTRA CURRICULAR COURSE - I	MECHATRONICS	EE	15 H	HOUR	S	1	NIL	
2.	17MTEE03	EXTRA CURRICULAR COURSE - II	MECHATRONICS	EE	15 H	HOUR	S	1	NIL	
3.	17MTEE04	EXTRA CURRICULAR COURSE - III	MECHATRONICS	EE	15 H	15 HOURS		1	NIL	
4.	17MTEE05	EXTRA CURRICULAR COURSE - IV	MECHATRONICS	EE	15 H	HOUR	S	1	NIL	

17EGHS01	TECHNICAL ENGLISH	Category	L	Т	Р	Credit
		HSS	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PREREQUISITE: NIL

COUR	COURSE OBJECTIVES														
1	To ena	able stu	dents to	o develo	op LSR	W skill	s in Eng	glish. (I	Listenin	g, Speak	ing, Re	ading, and	Writing.)	
2	To ma	the ther	n to bec	come ef	fective	commu	inicator	'S							
3	To ens	sure tha	t learne	ers use	Electro	nic mee	dia mate	erials fo	or devel	oping laı	nguage				
4	To aid	l the stu	idents v	with emp	ployabi	lity skil	lls.								
5	To mo	otivate s	students	contin	uously	to use H	English	languag	ge						
6	To de	velop tł	ne stude	ents con	nmunica	ation sk	tills in f	formal a	und info	ormal situ	ations				
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. L	CO1. Listen, remember and respond to others in different scenario Remember														
CO2. U	CO2. Understand and speak fluently and correctly with correct pronunciation in Understand														
differen	different situation.														
CO3. T	O3. To make the students experts in professional writing Apply														
CO4 '	To mak	e the st	udents	in profi	cient te	chnical	comm	unicator				Apply			
CO5. 7	Го mał	ke the	student	s good	l comn	nunicat	ors at	the wo	ork pla	ce and	to be	Apply			
theoreti	cally st	rong.		C					•						
CO6 To	o make	the stuc	lents re	cognize	the rol	e of tec	hnical	writing	in their	careers	in	Analyze			
busines	s, techn	ical and	d scient	ific fiel	d			_				-			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				L	L	Μ	Μ	Μ		S		S	S		S
CO2							L			S		S	Μ		S
CO3				L				L				L	Μ	Μ	
CO4	L					Μ		L	Μ	S	L	S	S	Μ	S
CO5	S	Μ	L					Μ		S		S	S		S
CO6	Μ		L	S								S	Μ		S
S- Stroi	ng; M-N	Aedium	; L-Lov	W	-	-	•	·			•		•		

SELF INTRODUCTION

SYLLABUS

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

READING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

CORPORATE COMMUNICATION

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

CRITICAL READING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXT BOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Course	Designers:	
	0	
S.No.	Name of the Faculty	Mail ID
1.	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in
2	Mr. S.K.Prem Kishor/Assistant Professor-	prem.english@avit.ac.in
	English	

17EG	HS02				BUS	INESS	ENGI	LISH			Catego	ory L	Т	Р	Cı	redit
											HSS	3	0	0		3
PREA Langua English as a tel	MBLE age is o a, the in escope t	ne of t ternatio to view	he mos onal lang the dre	t value guage p am of ti	d posse lays a he futur	essions vital rol re.	of men e as a p	. It act propelle	s as a r for the	repositor e advanc	y of wis ement of	dom. Ar	nong al lge in d	ll oth	er lan ent fiel	guages lds and
PRER	EQUIS	ITE: N	IL													
COUR	SE OB	JECTI	VES													
1	To in	npart ar	nd enhai	nce corj	porate c	commu	nication	l .								
2	To er	nable le	arners t	o devel	op pres	entation	n skills									
3	3 To build confidence in learners to use English in Business context															
4	To make them experts in professional writing															
5	To assist students understand the role of thinking in all forms of communication															
6	6 To equip students with employability and job searching skills															
COUR	COURSE OUTCOMES															
On the	success	ful con	pletion	of the	course,	student	ts will b	e able t	0	_	_	_	_	_		_
CO1. 0	Commur	nicate w	vith a ra	nge of t	formal a	and info	ormal co	ontext			1	Understa	nd			
CO2.	Students	s will u	ndergo	in activ	ities, de	emonstr	ating in	teractic	on skills	and con	sider 4	Apply				
how ov	vn com	nunicat	ion is a	djusted	in diffe	erent sc	enario					-				
CO3. S	trength	ening of	f oral a	nd writt	en skill	s in the	busine	ss conte	ext	_	1	Apply	_	_	_	_
CO4. 0	Create in	iterest a	mong t	he stud	ents abo	out a to	pic by e	explorin	g thoug	ghts and i	ideas A	Apply				
CO5. N	Aake the	e studer	nts to st	tart with	ı pleasi	ng note	and m	ake the	m to giv	ve differe	ent 4	Apply				
1deas	lata th		otton no	formor	an in th	a ant a	Faamma	mianti				Apply				
	INC W	TTH P					S AND			ME SPE	CIFIC (MES			
																DCO2
COS	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	P09	POIO	POIT	P012	PSO		502	PSO3
	M	М	L	м	L	D M	D M		M	5 5		5 5	D			
CO_2	т	M	3	IVI		M	IVI	т	L	5	т	5 M	IVI		М	
CO_4	L	T	М	М		IVI	T	L M	М	S S		M	М		IVI	М
CO5		Ľ	171	M				M	L	S	L	L	171			141
CO6		L		M		L	L			S		S	Μ		М	S
S- Stro	ng; M-N	Medium	n; L-Lov	W						~		~				~
								~								

SYLLABUS

SUBJECT AND VERB AGREEMENT: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS: Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION: Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences -Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

CRITICAL READING: Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

ТЕХТВООК

1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17EG	EGHS81 ENGLISH LANGUAGE LAB Category L T P Credit														
											HSS	0	0	4	2
PREA	MBL	E													
Englis	h Lang	guage]	Labora	tory p	rovides	s techn	ologic	al sup	port to	stude	nts. It ac	ts as a	platfor	m for l	earning,
practic	ing and	l produ	icing la	anguag	e skills	throug	gh inte	ractive	lesson	s and c	communic	ative mo	ode of t	eaching.	
PRER	EQUI	SITE:	NIL												
COUI	DEE O	DIECT	TWES												
1		derstar	d com	munice	ation n	licance	oc in th	e corne	orate ce	ector					
1	10 ull	uerstar		munica		ilsance	-5 m th	e corpo							
2	To un	derstar	nd the r	ole of	mother	tongu	e in sec	cond la	nguage	e learni	ing and to	avoid in	terfere	nce of n	other
	tongue														
3	To co	mmun	icate e	ffective	ely thro	ough di	fferent	activit	ies						
4	 4 To understand and apply the telephone efiquette 5 Case study to understand the practical aspects of communication 														
5	 Case study to understand the practical aspects of communication To improve the oral skills of the students 														
6 COU	6 To improve the oral skills of the students COURSE OUTCOMES														
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1.0	Boot po	rformo	noo in	the ort	of con	ISCUSSI	on and	nublic	enoolei	ina		Apply	na		
CO2.1	Give be	tter iol		tile alt	$\frac{01001}{1000}$	rporate	comp	public anies	speak	ing.		Apply Apply			
005.			o oppo	ituinite	5 11 00	iporat	comp	ames			1	тррту			
CO4.	Better	unders	standin	g of r	nuances	s of E	nglish	langu	age th	rough	audio-	Apply			
visual	experie	ence an	d grou	p activ	ities										
CO5.	Speaki	ng skil	ls with	clarity	and c	onfide	nce wł	nich in	turn ei	nhance	s their A	Apply			
emplo	yability	v skills	•			1 /1	1	1	•,,	1		A 1			
CO6. 4	Acquire	e strate	gic cor	npeten	ce to u	se both	spoke	en and v	written	langua	age in A	Apply			
	range			TDAM		S UTCO	MEC		DOCI		AE SDEC			MES	
							DO7		DOG						DCO2
COS	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POI	POIT	PO12	PSOI	PSO2	PSO3
CO1		S	М	S		L			S	0 8	М				S
CO^2	м	2		~		_			~ M			М	S	м	- S
CO_2	M									S		M	S	S	M
CO_{1}	M									м		171	M		M
CO4	M			e						М			- TVI	м	C IVI
005	IVI	N	М	3						IVI M			5		3
CO6			IVI							IVI			3	IVI	3
S- Stro	ong; M	Mediu	m; L-I	LOW											
						0.7.7									

SYLLABUS

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

MODULE V: Case study of Etiquette in different scenario.

Course Designers:

1 Dr.P.Saradha Associate Professor English saradhap@vmkvec.edu.in 2 M.G.K.D.K.L.L. Associate Professor English Saradhap@vmkvec.edu.in	S.No	Name of the Faculty	Designation	Department	Mail ID
	1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2 Mr.S.K.Prem Kisnor Assistant Professor English Prem.english@avit.ac.in	2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

173/111000		Category	L	Т	Р	Credit
17YMH882	YOGA & MEDITATION	FC(HS)	0	0	4	2
PREAMBLE						
Yoga is a p	hysical, mental and spiritual practice or dis-	cipline which originated	d in ancien	t India a	nd is fo	llowed in all
over the world.	Yoga is a discipline to improve or develop of	one's inherent power in	a balanced	d manner	. The U	niversity has
been celebrating	International Yoga day every year on 21st	June. The University h	as develop	ed Yoga	to prov	ide physical,
mental and spirit	ual practices to the employees, students of th	e university.				
PREREQUISITI	E - NIL					
COURSE OBJE	CTIVES					
1 To unders	stand the fundamental concepts of yogic prac	tices				
2 To study	the selected yogic practices and its impact or	selected systems in the	human boo	dy.		
3 Learned t	he Principles of Practicing Asana, Pranayam	a and Meditation.				
COURSE OUTC	COMES					
On the successful	completion of the course, students will be at	ble to				
CO1. Understand	ing the purpose of learning of yogic practices	S.				
CO2. Knowledge	of the interconnections between the body, th	e breath, the mind and t	he emotion	s in the c	ontext o	of maintaining
resilience a	and well-being	,				C
CO3. Understand	ing the principles of practicing asana, pranay	ama and meditation				
CO4. Knowledge	of health and disease relevant to the practice	of the yoga therapy.				
CO5. Creating aw	vareness about international yoga day.					
SYLLABUS						
1 Starting	Praver					
2. Surva Na	amaskar.					
3. Asanas-F	Padmasana, Vajrasana, Tadasana, Ardhakati c	hakrasana ,Uthana Pada	isana,			
Ustrasal A Pronovom	na, makarasana, rasunmouanasana, nalasana na Nadishuddhi Kanalahhati Sitlari, Sitali	, savasalla				
5 Meditatio	n-Deen Relayation					
6. Mudra-Cl	hin Mudra Chinmaya Mudra					
7 Closing P	Praver					

TEXTBOOKS

- 1. Iyengar B.K.S (2001), Yoga the path to holistic health, Dorling: Kindersley.
- 2. Mariayyah.P (2000) Suriyanamaskar, Perunthurai: Jaya Publishing House.

REFERENCE BOOKS

- 1. Saraswati, Niranjanananda (2010) Prana and pranayama. Mungaer.
- 2. Iyengar B.K.S (2003), The art of yoga, New Delhi. Harper Collins publishers.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail Id
1.	Dr.G.S.Thangapandiyan	Assistant Professor	Physical Education	yogistp@gmail.com
2.	Mr.N.Jayaraman	Assistant Professor	Physical Education	narayanajayaram82@gmail.com

17MBHS07	PROFESSIONAL ETHICSAND HUMAN VALUES	Category	L	Т	Р	Credit
		HSS	3	0	0	3

PREAMBLE: Ethics is a system of moral principles governing the appropriate conduct of a person or a group. Good Ethics is a fundamental requirement of any profession. Regardless of profession, ethics is an important part of work. The success depend on how the workers and their dealing with the situations ethically or unethically. Professional ethics are as important as personal ethics. Professional ethics encompass the personal and corporate standards of behavior expected by professional. Human values are the features that guide people to take into account the human element when one interacts with other human. They have many positive characters and positive feelings that create bonds of humanity between people and thus have value for all human beings and have the effect of bonding, comforting, reassuring and procuring serenity. They build space for a drive, a movement towards one another, which leads to peace.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the basic concept of Human Values and Ethics.

- 2. To analyse the common ethical practice in the engineering professionals.
- 3. To Practice various code of ethics in Engineering.
- 4. To apply the rights, legal, ethical issues.
- 5. To practice ethical responsibilities of a professional engineer.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the moral values that ought to be practiced in engineering profession	Understand
CO2: Analyse the role of ethics in the field of engineering.	Analyse
CO3: Practice the code of ethics and Industrial standards	Apply
CO4: Assess the Safety, Quality Management and Risk analysis	Evaluate
CO5: Apply the skills and knowledge to handle the contemporary issues.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	М	-	L	М	М	L	М	-	-	L
CO2	М	-	-	-	-	S	L	М	L	М	L	М	-	-	L
CO3	М	-	М	L	L	М	-	М	-	-	М	М	L	L	М
CO4	М	М	М	-	М	L	-	М	L	L	L	М	L	М	М
CO5	М	М	М	L	L	-	-	М	L	М	М	М	М	М	М
a a.			_	_											

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction to Human Values

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy –Self-Confidence–Discrimination -Character – Challenges in the work place -Spirituality –and stress management.

Overview of Engineering Ethics

Senses of 'Engineering Ethics' – Variety of moral issues – Moral Dilemmas- moral autonomy - Kohlberg'stheory-Gilligan'stheory-consensus and controversy-Profession – Types of Profession- Models of professional roles – Theories about right action – Self- Respect- Self-interest – Customs and Religion – Uses

of Ethical Theories–Religion - Case study: Choice of the theory

Engineering as Social Experimentation

Engineering as Experimentation – Engineering Projects VS. Standard Experiments - Engineers as responsible Experimenters – Codes of Ethics – anticorruption-A Balanced Outlook on Law.

SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

GLOBAL ISSUES

Transnational and MNC corporations-Environmentalethics-Computerethics-Weaponsdevelopment and Ethical - stand for Engineers in creation-Engineers as managers-Consulting engineers-Engineers as expertwitnessesandadvisorsEthical Responsibilities of a Professional Engineer as an Expert Witness -Moral Leadership –Code of Conduct – Corporate Social Responsibility **Case Studies**

TEXT BOOK:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 3. R.S. Nagarajan, A Text Book on Professional Ethics and Human Values, New Age International (P) Limited, Publishers,2006

REFERENCES:

- 1. CharlesD.Fleddermann, "EngineeringEthics", PearsonEducation/PrenticeHall, NewJersey, 2004
- 2. CharlesEHarris,MichaelS.ProtchardandMichaelJRabins,"EngineeringEthics–Concepts and Cases",WadsworthThompsonLeatning, United States,2000
- 3. John R Boatright, "Ethicsandthe ConductofBusiness", PearsonEducation, NewDelhi, 2003.
- 4. EdmundGSeebauerandRobertLBarry, "FundamentalsofEthicsforScientistsandEngineers", Oxford Press, 2000
- 5. R.Subramanian, "ProfessionalEthics", Oxford University Press, Reprint, 2015.

00010					
S.No	Name of the Faculty	Designation	Department	mail id	
1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in	
2	T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in	

COURSE DESIGNERS:

							CCOT		C	Catao	oru	T	т	D	Crodit
17	MBH	S02	-	FINAI	NCE A	IND A		S I I I I I	6				1	P	2
DDEAN	1D1 E.	Engin		ro in		tion to		o opinion	Mola		5		ity in t	bo ind	J
r KEAN	IDLE:	Eligit	m One	rotion	to No.	n Oper	o uo D	during	the ro	uting fu	ng ever	of the	organiz	ation	Especially
Finance	and Δ	ccounti	ing als	o beco	mes th	e nart	of resp	onsihili	ity of e	every er	nctions	or the	ta analy	vsis act	ivities His
interpret	ation t	hrough	ing ais i data a	nalvsi	s and r	e part i	or resp	verv tra	ny or v	on helps	the org	anizati	on to de	decisi	on making
to run th	e orga	nizatio	n effec	tivelv	and ef	ficient	v Fina	ance an	d Acc	ounting	Practice	s enabl	e the er	orineer	s to handle
the reso	irces to	n do co	st and	Financ	rial dec	risions	with o	ntimun	n resou	urces for	the bet	terment	of the of	organiz	ation
PRERE		$\frac{1}{1} = \frac{1}{1}$	lot Rec	mired			with 0	puinun						51 guill2	
COURS	E OB	JECTI	VES:	lanca											
1 To u	nderst	and the		ents a	nd cor	ventio	ons to	nrenar	e Inco	ome Sta	tement	and B	alance	Sheet	
1. 10 ui	liderst			epts u		Iventi	5115 10	propur	e met		.tement	, und D	ululiee	Sheet	
2. To ap	oply th	ne vario	ous m	ethods	s to cla	im de	precia	tion ar	nd						
3. To p	ractico	e funda	ament	al invo	estmer	nt deci	sion tł	nrough	capit	al budg	eting te	echniqu	les.		
4. To ar	nalyse	cost-v	olume	e profi	t analy	ysis fo	r decis	sion m	aking	and an	alyse st	andard	costin	g techi	niques.
5. To es	stimate	e the w	orkin	g capi	tal req	uirem	ents fo	or day-	to-day	y activi	ies and	l handli	ing inv	entorie	es with
econom	ic ord	ering o	quanti	ties.											
COURS	SE OU	TCOM	IES:												
After su	ccessfi	ıl comp	oletion	of the	course	, stude	ents wil	l be ab	le to						
CO1: U	CO1: Understand the importance of recording, book keeping and reporting of the Understand														
busines	s trans	action													
CO2: Id	lentify	and Ap	oply su	itable	metho	d for cl	harging	g depreo	ciation	on fixe	d assets		Ap	ply	
CO3: A	nalyse	the var	rious n	nethod	s of ca	pital b	udgetir	ng techr	niques	for inve	estment	decisio	n. Ap	ply	
CO4: Ju	stify t	he sco	pe of	cost-v	olume	-profi	t analy	vsis, sta	andarc	l costin	g, and i	margin	al An	alyse	
costing	techni	iques f	for dec	cision	makin	g.									
CO5: Es	stimatio	on of w	orking	g capita	al requi	remen	ts of th	e organ	nizatio	n.			Eva	aluate	
MAPP	ING V	VITH	PRO	GRAI	MME	OUT	COM	ES AN	D PR	ROGRA	MME	SPEC	CIFIC (OUTC	OMES
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	М	L	S	М	-	S	-	М	М	L	М	L	М
CO2	L	-	-	L	М	-	L	L	-	-	L	М	L	L	-
CO3	_	М	-	М	L	-	-	L	S	М	-	L	-	L	М
CO4	L	L	-	S	-	-	L	-	-	L	М	L	М	L	М
CO5	L	-	L	S	L	-	-	М	М	L	-	L	М	М	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction: Business Environment – Forms of business – Book Keeping and Accounting – Accounting Concepts and Conventions – Journal – Subsidiary books - Ledger – Trial Balance – Final Accounts

Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types -Evaluation Techniques – Non-Discounting Cash Flow Techniques: Pay Back Period – Accounting Rate of Return – Discounting Cash Flow Techniques: NPV – IRR - Profitability Index.

Costing Accounting: Concepts - Elements of Cost - Preparation of Cost Sheet - Types of Costs – Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – ACP, Aging schedule –Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- 1. Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

S.No	Name of the Faculty	Designation	Department	Mail ID
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2	Dr. Rajeshkumar	Assistant Professor	Management Studies	Rajesh.mba@avit.ac.in

COURSE DESIGNERS:

										1					
Subjec	et Code				Subj	ect Title	e			Cate	egory	L	Т	Р	Credit
17M A	ABS01		EN	IGINE	ERING	G MAT	HEMA	TICS		E	BS	2	2	0	3
PREA	MBLE														
The dri	ving for	ce in E	Engineer	ring Ma	themat	ics is th	e rapid	growth	of tech	nology a	and is de	signed to	o provide	the bas	sic tools of
calculu	s mainl	y for tl	he purp	ose of	modelli	ing the	engine	ering pi	roblems	mathen	natically	and obta	aining so	lutions	. This is a
founda	tion cou	rse wh	ich mai	nly dea	ls with	topics	such as	single	variable	and mu	ıltivariab	le calcul	lus and p	lays an	important
role in	the und	erstand	ing of s	cience,	engine	ering, e	conomi	cs and o	compute	er scienc	e, among	g other di	isciplines	5.	
PRER	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1	To ide	entify th	ne chara	acteristi	cs of a	linear s	ystem v	vith Eig	en value	es and E	igen vec	tors.			
2	To im	prove t	heir abi	lity in s	olving	geomet	rical ap	plicatio	ons of di	fferentia	ıl calculu	S			
3	To fin	d a ma	ximum	or mini	mum v	alue for	a funct	tion of s	several v	variables	subject	to a give	en constra	aint.	
4	To un	derstan	d the in	tegratio	on techr	iques f	or evalu	lating s	urface a	nd volu	me integr	als.			
5	Incorp	orate t	he knov	vledge	of vecto	or calcu	lus to s	upport t	their con	current	and subs	equent e	ngineerii	ng studi	es
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.	Able to	unders	stand th	ie syste	m of li	near ec	quations	s arisin	g in all	enginee	ering fiel	ds using	g matrix	Unde	rstand
method	ls.													ende	stand
CO2.	Determi	ne the	evolute	and en	velope	for a giv	ven fan	nily of c	urves					Appl	ý
CO3. <i>A</i>	Apply di	fferent	iation to	o solve	maxim	a and m	inima p	oroblem	IS.					Appl	ý
CO4. (Compute	e the ar	ea and	volume	of plan	e using	integra	tion						Appl	ý
CO5. I	Evaluate	the su	rface ar	nd volui	ne integ	gral usi	ng Gree	en's, Sto	okes and	Gauss	Diverger	ice theor	ems	Analy	/ze
MAPP	ING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAMN	AE SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1	S	М	М	М	М							М	S	М	М
CO2	S	М	М	М	М							М	S	М	М
CO3	S	М	М	М	М							М	S	М	М
CO4	S	М	М	М	М							М	S	М	М
CO5	S	М	М	М	М							М	S	M	М
S- Stro	ng; M-N	Aedium	n; L-Lo	W	I	I			<u>. </u>		1	1	1		I
SYLL	ABUS														

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Ms.S.Gayathri	Asst.Prof.Grade I	AVIT	gayathri@avit.ac.in

Subjec	t Code	1	DIEF		Subj	ect Titl	e		D	Categ	gory	L	Т	Р	Credit
17MA	ABS 06		DIFF	'EREN]	TIAL	EQUA SFOR	ATION MS	NS AN	D	BS	5	2	2	0	3
PREA	MBLE	E													
Ord	Ordinary Differential Equation is used in contrast with the term partial differential equation which may be with														
respect	t to mo	re thai	n one ii	ndepen	dent va	ariable	A rea	l time	natural	ly availa	able sign	nal is in	the form	n of tim	e domain.
Howev	ver, the	analys	sis of a	signal	is far	more c	onveni	ent in	the free	quency of	lomain	with the	e help of	Transfo	rmations.
Transf	orm tec	chniqu	es are v	very im	portan	t tool i	n the a	nalysis	of sig	nals.					
PRER Engine	PREREQUISITE Engineering Mathematics (17MABS01)														
COUT															
		DJEC.		1:00	4:-1							4			
		arn orc	linary c	Interen	itial eq	uations	s with c	constan	it and v	ariable	coefficie	ents			
2	To lea	arn Laj	place tr	ansfor	m and	its Inve	erse me	ethod to	o solve	differer	tial Equ	ations a	and integ	gral trans	forms
3	To de	rive a	Fourier	r series	of a g	iven pe	riodic	functio	on by e	valuating	g Fourie	er coeffi	cients		
4	To ca	lculate	the Fo	ourier ti	ransfor	m of p	eriodic	functi	ons						
5	5 To learn about Z- transforms and its applications														
COUR	COURSE OUTCOMES														
	On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents	will be	able to					
CO1.	Solve	differe	ntial e	quation	ns with	n const	ant an	d varia	able co	oefficien	ts and	Simulta	neous fi	rst	Apply
001	order li	inear e	quation	ns with	consta	int coe	fficient	.S	- 1:66-						A
CO2.	Use the	Lapia	ce Trai	nstorm	techni	que to	solve c	ordinar	y diffei	rential e	quations	5.			Арріу
CO3.	Fo appl	y Fou	rier seri	ies met	hods to	o solve	bound	ary val	lue pro	blems fo	or linear	ODEs.			Apply
CO4.	To use	the Fo	ourier t	ransfor	m as t	he tool	to con	nect th	ne time	domain	and fre	equency	domain	in	Apply
signal	process To gain	sing.	nwled	ge in 7	' Trans	form to	the Δ	nalveie	s of Dia	rital Filt	ers and	Discrete	Signal		Apply
MAPF	PING V	VITH	PROG	RAM	ME O		MES	AND F	PROG	RAMM	E SPEC	CIFIC C		MES	rippiy
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	<u>s</u>	M	M	M							M	S	M	M
CO2	S	S	M	M	M							M	S	M	M
CO3	S	S	М	М	М							М	S	М	М
CO4	04 S S M M M M S M M														
CO5	S	S	М	М	М							М	S	М	М
S- Stro	ong; M	-Medi	ium; L	-Low											
SYLL	SYLLABUS														

ORDINARY DIFFERENTIAL EQUATIONS: Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS: Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

FOURIER SERIES: Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS: Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS: Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

TEXT BOOKS:

- 1. Engineering mathematics I & II ", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 3. Veerarajan, T., "Engineering Mathematics I,II and III", Tata McGraw Hill Publishing Co., New Delhi (2011).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr. M.Vijayarakavan	Asso.Prof	VMKVEC	vijayarakavan@vmkvec.edu.in
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in

17M	ABS1)	PART	IAL D	IFFEF	RENTI	AL E	QUAT	IONS	Categ	ory	L	Т	Р	Credit
				ANI) LINE	CAR A	LGEB	RA		BS	5	2	2	0	3
PREA	MBLE														
Partial and fib involvi Algebr	differe ber option ing add tra is use	ntial cs. It ition ed in a	equatio can be and sca malog a	ns are solved lar mu ind dig	applie by var ltiplica ital cor	d in m ious m tion ha	any En nathem as the a cation	ngineer atical t applica system	ring fie techniq tions to t.	ld like l ues. The o many	Electro e gener areas o	magnetic al theory of comm	c field, I of math unication	Electroni nematica n system	cs circuit l systems ls. Linear
PRER Differe	EQUIS ential E	SITE quatic	ons and	Transf	orms (17MA	BS06)								
COUR	RSE OF	BJEC	TIVES												
1	To be	famil	iar witł	n applio	cations	of part	ial diff	ferentia	al equat	ions					
2	To for	rmula	te and s	olve pa	artial d	ifferent	tial equ	ations	•						
3	To un	dersta	and the	concep	ts of ve	ector sp	pace, li	near tr	ansforr	nations	and dia	gonaliza	tion		
4	To ap	ply th	e conce	pt of i	nner pr	oduct s	spaces	in orth	ogonali	zation.					
5	To co	mpute	e the lin	ear tra	nsform	ations	and fin	d matr	rices of	general	linear	ransform	nations.		
COUR	URSE OUTCOMES														
On the	n the successful completion of the course, students will be able to														
CO1. Engine	O1. Understand the basic concepts of linear, non-linear partial differential equations related to understand														
CO2. Sheat flo	Solve p ow equa	artial ation	differei by Foui	ntial eq rier ser	uations ies.	s arisin	g in en	igineer	ing pro	blems li	ke wav	e equation	ons and	Appl	y
CO3. and co	Use cor lumn sp	nputa pace f	tional to or the g	echniqu iven v	ies and ector sj	algebi bace.	raic ski	ills to c	comput	e the dir	nensio	n of row	space	Appl	y
CO4.	Apply	the co	oncept o	of inner	r produ	ct spac	e in va	rious l	inear sy	ystem re	lated p	roblems.		Appl	y
CO5.]	Form of	rthogo	onal bas	sis and	use the	em to se	olve er	ngineer	ing pro	blems.				Appl	y
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPE	CIFIC (DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ		М	Μ							М	S	М	Μ
CO2	S	S		M	М							М	S	М	М
CO3	S	S		M	Μ							М	S	М	Μ
CO4	S	S		M	Μ							М	S	М	Μ
CO5	S	S		Μ	Μ							Μ	S	М	Μ
S- Stro	ong; M	-Med	ium; L	-Low											
SYLL	ABUS														

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

BOUNDARY VALUE PROBLEMS: Classification of second order linear partial differential equations -Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of twodimensional heat equation - Fourier series solutions in Cartesian coordinates.

VECTOR SPACE AND SUBSPACE: Introduction to vector space and subspace, Linear independent and dependent, spanning set, Basis and dimension, Row space and column space.

INNER PRODUCT SPACES: Inner products, inner product spaces- Cauchy-Schwarz inequality, Linear functional and adjoints, unitary operations and normal operators- spectral theorem.

ORTHOGONALITY AND LINEAR TRANSFORMATION: Introduction to orthogonality, Least square approximation, Orthogonal basis and Gram Schmidt orthogonalisation, Linear transformation and its matrix representation.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 35th Edition, Khanna Publishers, Delhi, 2012.
- 2. Kennath M. Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, Pearson India Publishing, New Delhi, 2015.
- 3. M.Artin, "Algebra", Prentice Hall of India Pvt. Ltd., New Delhi, 2005.

REFERENCES:

- 1. A.Singaravelu, "Transforms and Partial Differential Equations", Meenakshi Agencies, Chennai, 2015.
- 2. Kreyszig, E., "Advanced Engineering Mathematics" (8th Edition), John Wiley and Sons, (Asia) Pvt. Ltd., Singapore, 2000.
- 3. Dr.Gunadhar Paria, "Linear Algebra", New Central Book Agency (P) Ltd, 2009.

COURS	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.V.T.Lakshmi	Asso.Prof	VMKVEC	lakshmi@vmkvec.edu.in
2	Ms.S.Sarala	Asst.Prof. grade II	AVIT	sarala@avit.ac.in

COUDCE DECICNEDO

17M	IABS16			NU	MERIO	CAL M	ЕТНО	DS		Categ	jory	L	Т	Р	Credit
						-	_			BS	5	2	2	0	3
PREA This co subsequ student state pr	PREAMBLE This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. An under graduate of Engineering student needs to know sufficient numerical methods and techniques for solving engineering problems such as static or steady state problems, vibration or stability problems and initial value or transient problems etc.														
PRER 1.Engir 2.Diffe	EQUISI neering l rential E	TE Mather Equation	matics (17MAE Transfo	3S01) orms (17	7MABS	06)								
COUR	SE OB.	JECT													
1	To fan	niliar v	vith nun		solution	n of equ	ations	• .•							
2	Tobe	get exp	posed to	finite	differen	$\frac{\cos and}{\cos and}$	interpo								
3	Tobe	thorou	gh with	the nui	merical	Differe		n and in	tegratio	n					
4	Tofine		erical so	olutions	of ordi	nary dif	terentia	al equat	ions						
			erical so	olutions	of part	ial diffe	rential	equatio	ns						
	COURSE OUTCOMES														
CO1. 5	CO1. Solve the system of linear algebraic equations and single non linear equations arising in the field of Engineering. Apply														
CO2. <i>A</i>	Apply m	ethods	to find	interme	ediate n	umerica	al value	e & poly	nomial	of nume	rical da	ta.		Apply	1
CO3 . A	Apply m	ethods	to find	integra	tion, de	rivative	s of on	e and ty	vo varia	ble func	tions.			Apply	/
CO4. S	Solve the	e initia	l value p	problem	ns using	single	step an	d multi	step me	thods.				Apply	/
CO5. S	Solve the	e boun	dary val	ue prot	olems us	sing fin	ite diffe	erence r	nethods	•				Analy	ze
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	S	М	М
CO2	S	S	Μ	М	М						-	М	S	М	М
CO3	S	S	М	М	М							М	S	М	М
CO4	S	S	S	S	М							М	S	М	М
CO5	S	S	S	S	М							М	S	М	М
S- Stro	ong; M-l	Mediu	m; L-L	OW											

SYLLABUS

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS: Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method. Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS: Finite difference solution for the second order ordinary differential equations, Finite difference solution for one dimensional heat equation (both implicit and explicit). One dimensional wave equation and two dimensional Laplace and Poisson equations.

TEXT BOOKS:

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers, 2015.
- 2. S. R. K. Iyengar, R. K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition, 2012.
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2004).

REFERENCES:

- 1. Joe D. Hoffman , Steven Frankel, "Numerical Methods for Engineers and Scientists", 3 rd Edition, 2015, Tata Mc-Graw Hill. (New York).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education, 2010.

S.No	Name of the Faculty	Designation	Name of the college	Mail ID
1	Dr. S.Punitha	Associate Professor	VMKVEC	punitha@vmkvec.edu.in
2	Dr.A.K.Bhuvaneswari	Asst.Prof. grade II	AVIT	bhuvaneswari@avit.ac.in

17PC	CBS02			PHY	YSICA	L SCIE	INCES			Categ	ory	L	Т	Р	Credit
			PAF	RT A -	ENGIN	NEERII	NG PH	YSICS		BS		2	0	0	2
PREA	MBLE									1					
Engine domain fibers i fabricat	ering Pl s. Unc n comr te vario	hysics i lerstand nunicat us conc	s the st ling the ion and eptual l	udy of concept d differ based d	advance pts of la ent typ evices.	ed phys aser, tyj es of n	ics con pes of 1 on-dest	cepts an lasers, t ructive	nd their thepropa technic	applicati agation o ques will	ions in y f light (help at	various to hrough f n engine	echnologi ibers, ap er to ana	ical and er plications lyze, desi	ngineering of optical gn and to
PRER	EQUIS	ITE :	NII												
COUR	SE OB	JECTI	VES												
1	To rec	call the	propert	ies of la	aser and	l to exp	lain pri	nciples	of laser						
2	To ass	sess the	applica	ations o	f laser										
3	To de	tail the	princip	les of fi	iber opt	ics									
4	To stu	dy the	applica	tions of	fiber o	ptics									
5	To ex	plain va	arious te	echniqu	les used	in Non	-destru	ctive te	sting						
COUR	SE OU	TCOM	IES												
On th	e succe	essful co	ompleti	on of th	ne cours	e, stude	ents will	l be abl	e to						
CO1.	01. Understand the principles laser, fiber optics and non-destructive testing Understand														
CO2.	Unders	stand th	e const	ruction	of laser	r, fiber o	optic ar	nd Non-	Destruc	ctive testi	ng equi	pments	Underst	and	
CO3.	Demor compo	nstrate onents a	the wo nd devi	orking ces	of lase	er, fibe	r optic	and 1	Non-De	structive	testing	, based	Apply		
CO4.	Interpr various	et the j s fields.	potentia	ıl applio	cations	of lase	r, fiber	optics	and No	n-Destru	ctive te	sting in	Apply		
CO5.	Differe Destru	entiate ctive te	the wo	orking ased de	modes vices.	of var	rious ty	ypes of	f laser,	fiber op	ptic and	d Non-	Analyze	e	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	М	-	-	-	-	-	-	-	-	М	М	-	-
CO2	S	-	L	-	-	-	-	-	-	-	-	Μ	M	-	-
CO3	S	-	-	Μ	-	-	М	-	-	-	-	М	M	-	-
CO4	S	Μ	-	M	M	S	М	-	-	-	-	M	S	-	-
CO5	S	M	M	-	-	-	-	-	-	-	-	М	Μ	-	-

SYLLABUS

UNIT-I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

UNIT-II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

UNIT-III

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.

3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co, 2010.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.

4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.

5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COURSE DESIGNERS

00010				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

17PCBS02	PHYSICAL SCIENCES PART B -ENGINEERING CHEMISTRY	Category	L	Т	Р	С
	Semester I (Common to All Branches)	BS	2	0	0	2
D 11						

Preamble

Objective of this course is to present a better understanding of basic concepts of chemistry and its applications on different engineering domains. It also imparts knowledge on fundamentals of Electrochemistry, Energy storage technologies, properties of water and its treatment methods, classification of fuels, Non conventional sources of Energy and various advanced Engineering materials.

Prerequisite

Not required

Cours	se (Objective	S							
	1		To impart basic knowledge in Chemistry so that the student will und concept	erstand the engineering						
	2		To familiar with electrochemistry and Battery and fuel Cells							
	3		To lay foundation for practical applications of water softening met methods in engineering aspects.	ethods and its treatment						
	4		To inculcate the knowledge of fuels and advanced material.							
Cours	se (Outcomes	5							
After	the	successfu	al completion of the course, learner will be able to							
CO)1.	Describe devices	e the electrochemistry, batteries and working principle of energy storage	Understand						
CO	2.	Estimate	e the hardness of water	Apply						
CO	93.	Identify	suitable water treatment methods	Analyze						
CO	CO4. Outline the important features of fuels and advanced materials Analyze									
Mapr	ping	g with Pr	ogramme Outcomes and Programme Specific Outcomes	·						

[COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO6.	S	М	-	М	-	S	S	S	-	-	L	М	S	-	М

CO7.	S	S	М	-	-	М	М	М	-	-	-	М	-	-	-
CO8.	S	S	М	-	-	М	S	М	-	-	-	М	-		-
CO9.	S	-	-	-	L	L	М	L	-	-	-	S	М	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

Electrochemistry, Batteries and Fuel cells

Electrode potential - Nernst equation - Electrodes (SHE, Calomel and Glass) - cells - EMF measurement.

Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H₂-O₂ fuel cell)

Water Technology and Corrosion

Sources of water - impurities - Hardness and its determination (problems to be avoided) - boiler troubles -

water softening (Zeolite & Demineralisation) – Domestic water treatment – Desalination (Electrodialysis & Reverse Osmosis).

Fuels And Chemistry of Advanced Materials

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) - Calorific Value of a fuel -Non

Petroleum Fuels -- Non conventional sources of Energy -- combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXT BOOKS

1. Engineering Chemistry by prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.
| Cour | Course Designers: | | | | | | | | | | | | | |
|----------|--------------------------|------------------------|------------|----------------------------------|--|--|--|--|--|--|--|--|--|--|
| S.
No | Name of the Faculty | Designation | Department | Mail ID | | | | | | | | | | |
| 1. | Dr. V. Anbazhagan | Professor | Chemistry | anbu80@gmail.com | | | | | | | | | | |
| 2. | Mr. A. Gilbert Sunderraj | Assistant
Professor | Chemistry | asmgill80@gmail.com | | | | | | | | | | |
| 3. | Dr. R. Nagalakshmi | Professor | Chemistry | nagalakshmi.chemistry@avit.ac.in | | | | | | | | | | |
| 4. | Dr.K.Sanghamitra | Associate
Professor | Chemistry | sanghamitra.chemistry@avit.ac.in | | | | | | | | | | |

17DHBS05	SMART MATERIALS	Category	L	Т	Р	Credit
171110505		Basic Sciences	3	0	0	3

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PREREQUISITE

NIL

COURSE OBJECTIVES

	To evaluate the fundamental momenties and elegatification of amout materials, emotalling materials. Near materials														
1	To exp	plain th	e funda	mental	propert	ies and	classifi	cation	of smar	t materia	ls, cryst	alline ma	terials, N	ano mate	erials,
	Magne	etic ma	terials a	and Sup	er cond	ucting	materia	ls.							
2	To pa	raphras	e the ba	sic crys	stalline	structu	re and i	ts prope	erties.						
3	To illustrate the synthesis and fabrication of Nano materials.														
4	To predict the application of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.														
5	To analyze the various parameters of crystalline materials.														
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	to						
CO1. R	estate t	he prop	erties o	of variou	is mater	rials.						Understa	nd		
CO2. S	ummari	ize the	various	structu	res of n	naterials	8.					Understa	nd		
CO3. P	redict tl	he appli	ications	of vari	ous ma	terials t	o desig	ning eq	uipmen	ts.		Apply			
CO4. Il	lustrate	the pro	perties	of mate	erials to	design	ing equ	ipment	s.			Apply			
CO5. C	alculate	e the cr	ystallin	e param	eters of	f the ma	aterials.					Analyze			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				М			S	S		
CO2	S	М	S	Μ	S				М			М	М		
CO3	S	S	S	S	S				S			М	М	М	
CO4	S	М	S	М	S				М			М	S	М	
CO5	М	S	S	М	М				S			М			

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials - Top-down approach - Mechanical Grinding - Lithography - Bottom-up

approach - Sol-gel method - Carbon nanotubes - Fabrication - applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2018.

REFERENCES:

1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.

2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

COURSE DESIGNERS

COUR				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in
3	Dr .G. LATHA	Professor	Physics	latha.physics@avit.ac.in
4	Dr. R. N. VISWANATH	Professor	Physics	viswanath.physics@avit.ac.in

17CHRS01	Environmental Science & Engineering	Category	L	Т	Р	С
	(Common to All Branches)	BS	3	0	0	3

Preamble

Environmental science and Engineering is an interdisciplinary field that integrates physical, chemical, biological, information sciences and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protect it. Furthermore, it deals the social issues and ethics to develop quality engineer in our country. **Prerequisite**

Not required

Course Objectives

1	Applying Science and Engineering knowledge to protect environment									
2	To provide comprehensive insight in natural resources and protect natural resources									
3	To create awareness on the various pollutions and their impact.									
4	To educate the ways and means to manage natural calamities									
5	To impart fundamental knowledge on human welfare measures									
Course	^T ourse Outcomes:									

After Successful completion of this course, the students will be able to:

CO1.	Comprehend the impact of engineering solutions in a global and	Understand
	societal context	
CO2.	Illustrate the contemporary issues that results in environmental	Understand
	degradation and would attempt to provide solutions to overcome	
	those problems	
CO3.	Illustrate the importance of ecosystem and biodiversity	Apply
CO4.	Practice to improve the environment and sustainablity	Apply
CO5.	Conclude the importance of conservation of resources.	Analyze
CO6.	Estimate the important role of IT in healthy environment for future	Analyze
	generations	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1.	S	Μ	-	-	-	Μ	S	S	Μ	Μ	-	S	S	Μ	Μ
CO2.	S	-	-	-	-	S	S	S	-	-	-	S	S	Μ	Μ
CO3.	S	-	-	-	-	Μ	S	Μ	L	-	-	S	S	Μ	Μ

CO4.	S	-	-	-	-	Μ	S	S	Μ	Μ	-	S	-	Μ	S
CO5.	S	I	I	-	-	Μ	S	S	Μ	Μ	-	S	-	Μ	S
CO6.	S	I	-	-	-	Μ	S	S	Μ	Μ	-	S	Μ	Μ	S

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION

Pollution - Definition, man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

TEXTBOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and tandards Vol I & II, Enviro media.
- 4. Dr. J. Meenambal, Environmental Science and Engineering, MJP Publication, Chennai
- 5. Gilbert M. Masters : Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0, 2004

Course Designers:

S.	Name of the Faculty	Designation	Department	Mail ID
No				
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

17PCBS81

PHYSICAL SCIENCES LAB: PART A – REAL AND VIRTUAL LAB IN PHYSICS

L	Category	L	Т	Р	Credit
	BS	0	0	2	1

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL

COURSE OBJECTIVES 1 To impart basic skills in taking reading with precision of physics experiments															
1	To im	part bas	sic skill	s in tak	ing read	ding wi	th preci	sion of	physics	s experin	nents				
2	To inc	culcate	the habi	it of ha	ndling e	equipme	ents app	propriat	ely						
3	To ga	in the k	nowled	ge of p	racticin	g exper	iments	through	n virtual	laborate	ory.				
4	4 To know the importance of units														
5 To obtain results with accuracy															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Recognize the importance of units while performing the experiments, calculating the Understand physical parameters and obtaining results															
CO2. Operate the equipments with precision Apply															
CO3. Practice to handle the equipments in a systematic manner Apply															
CO4. Demonstrate the experiments through virtual laboratory Apply															
CO5.	Calcul	ate the	result w	ith acc	uracy								Analyze	;	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S													
CO2	S	S	М	М	S				М			М	М		
CO3	S														
CO4	S	S	М	М	S							S	М		
CO5	S	S													
S- Strop	ng; M-N	Medium	i; L-Lov	N											
 SYLLABUS Young's modulus of a bar - Non-uniform bending Rigidity modulus of a wire - Torsional Pendulum Viscosity of a liquid - Poiseuille's method Velocity of ultrasonic waves in liquids - Ultrasonic Interferometer Particle size determination using Laser 															

- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc

- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Missions Research Foundation (Deemed to be University), Salem.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

	PHYSICAL SCIENCES	Category	L	Т	Р	С
	PART B - ENGINEERING					
17PCBS81	CHEMISTRY LAB Semester I (Common to All Branches)	BS	0	0	2	1

Preamble

The main objective of this course is to develop the intellectual and psychomotor skills of the students by imparting knowledge in water technology and quantitative analysis.

Prerequisite

Not required

Course Objectives

1	To impart basic skills in Chemistry so that the student will understand the engineering concept.
2	To inculcate the knowledge of water and electrochemistry.
3	To lay foundation for practical applications of chemistry in engineering aspects.
Course	Outcomes

After the successful completion of the course, learner will be able to

CO1.	Estimate the chemical properties of water	Apply
CO2.	Determine the presence of various elements in the water	Analyze
CO3.	Calculate the strength of acids, oxidizing and reducing agents	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO6.	S	Μ	Μ	-	L	Μ	Μ	S	-	-	-	Μ	S	-	Μ

CO7.	S	М	М	-	L	М	М	L	-	-	-	М	-	М	-
CO8.	S	S	М	-	L	М	М	М	-	-	-	М	М	-	М

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. Estimation of Iron by Spectrophotometer

TEXT BOOKS

1. Laboratory Manual on Engineering Chemistry prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

1. Laboratory Manual on Engineering Chemistry, K. Bhasin S, Dhanpat Rai Publishing Co Pvt Ltd

Course Designers:

S.	Name of the Faculty	Designation	Department	Mail ID
No				
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry	asmgill80@gmail.com
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate Professor	Chemistry	sanghamitra.chemistry@avit.ac.in

1.00			Egg							Catego	ory	L	Т	Р	Cre	edit
I7CS	ESOI		ESS	SENTIA	ALS O	F COM	IPUTI	NG		ES		3	0	0	3	3
PREAN This co emphas applica	MBLE ourse ain sizing p tion.	ms to pr	rovide t es applie	he func cation p	lamenta backage	l conce s. Stud	pts of (ying th	Compute e funda	er opera	ations lik s concept	e hardwa s of Alg	are ar orithr	nd soft ns, to	tware in resolve	nstallation the real	on, and world
PRER	PRERQUISITE – Nil															
COURSE OBJECTIVES																
1 To provide basic knowledge of hardware and software components of computers.																
2	To introduce and demonstrate various software application packages.															
3	To study Problem solving Techniques and program development cycle.															
4	To learn about various algorithm and identifying the algorithm efficiency.															
5	5 To learn different algorithm for various application.															
COUR	RSE O	UTCO	MES													
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	idents	will be	able to)						
CO1. 7	Γo unde	rstand	the Basi	ic know	ledge o	on hardy	ware an	d softwa	are terr	ninologie	es.	ι	Jnder	stand		
CO2. 7	Го Dem	onstrat	e the va	rious A	pplicat	ion Pac	kages li	ike MS-	word,]	MS-Exc	el etc.	I	Apply			
CO3.T Technie	'o Und ques.	erstand	Progra	um Dev	olveme	ent Cyc	ele and	apply	various	s Problei	m Solvii	ng	Apply			
CO4.T	o analy	ze the	efficien	cy of A	lgorith	ns.						1	Analy	ze		
CO5.T	'o Imple	ement o	of Algor	ithms f	or vario	ous con	cepts.					1	Apply			
MAPF	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFI	C OU	TCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12 F	SO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-		S	М	-
CO2	S	М	М	-	М	-	-	-	-	-	-	Μ	-	S	М	М
CO3	S	S	S	_	Μ	_	_	_	_	_	_	-		S	-	М
CO4	S	S	S	-	S	-	-	-	-	-	-	-	- S		М	М
CO5	S	М	М	-	М	-	-	-	-	-	-	S		S	М	М
S- Stro	$\frac{COS}{S} = \frac{S}{M} = \frac{M}{M} = \frac{1}{M} = \frac{1}{S} = \frac{1}{S} = \frac{1}{S} = \frac{1}{S} = \frac{1}{S} = \frac{1}{S} = \frac{1}{M} = \frac{1}{M} = \frac{1}{M}$ S- Strong; M-Medium; L-Low															

SYLLABUS

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004

2004.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

0001				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

COURSE DESIGNERS

	17CMES02			SICS C	F CIV	IL AN	D ME	CHAN	NICAL	1	Category	L	Т	Р	Credit
17C	MES	502	PART	-A BAS	SICS	OF CIV	VIL EN	GINE	ERIN	G	FS	2	Δ	0	2
				(C	ommo	n to Al	l Brano	ches)			E9	2	U	U	2
PREA	MB	LE													1
	Tł	ne aim	of the s	ubject i	s to pr	ovide a	fundan	nental	knowle	edge o	of basic Civ	vil Engi	neering		
PREF	REQI	UISIT	'E- NIL												
COURSE OBJECTIVES															
1 To understand the basic concepts of surveying and construction materials.															
2	2 To impart basic knowledge about building components.														
COU	OURSE OUTCOMES														
On t	n the successful completion of the course, students will be able to														
CO1.	An ability to apply knowledge of mathematics, science, and engineering. Apply														
CO2. data .	2. An ability to design and conduct experiments, as well as to analyze and interpret Apply														
MAP	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	М	S	-	I	-	-	-	-	М	-	L
CO2	S	M		S	М	S	-	-	М	-	-	-	-	S	-
S- Str	ong;	M-Me	dium; I	-Low											
SURV	ZADU VEYI	NG A	ND CI	VIL EN	IGINF	ERIN	G MAI	FERI	LS						
SURV	VEYI	NG:	Objects	– types	- clas	sificati	on – pr	inciple	es – me	easure	ements of d	listance	s – angl	es – lev	elling –
deterr	ninat	ion of	areas –	illustrat	ive ex	amples		•					U		U
CIVI	L EN	GIN	CERIN	G MAT	ERIA	LS: Br	icks – s	tones	– sand -	- cen	ent – conc	rete – s	teel sect	ions.	
BIII	DIN	c co	MDON	ENITS .		TDIC	TIDE	с.							
FOUN	NDA'	G CO TION	S: Type	s. Beari	ing car	acity –	Requir	s. ement	of goo	d fou	ndations.				
SUPE	CRST	RUC	TURE :	Brick n	hasonr	y – stoi	ne maso	onry –	beams	$-\operatorname{col}$	umns – lint	els – ro	ofing – t	flooring	_
plaste	ring -	- Mec	hanics -	Interna	and e	externa	l forces	– stre	ss – str	ain –	elasticity –	Types	of Bridg	es and I	Dams –
Basics	s of I	nterio	Design	and La	ndscap	oing.									
TEXT	Г ВО	OKS													
1. "Ba	asic C	civil a	nd Mec	anical]	Engine	ering",	VMU,	(2017). Com	pany	Ltd., New	Delhi,2	009		
REFF	EREN	ICES	:												
1.Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.															
2. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies.															
	KSE	DF91	GNEK) 	<u> </u>	-		<u> </u>							
S. N	0.	Nam	e of the	Faculty	7	Desig	nation		Dep	t/ Co	llege		M	ail ID	

1	S. Supriya	Assist. Professor	Civil / VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

BASICS OF CIVIL AND MECHANICAL ENGINEERING										Categ	ory	L	Т	Р	Credit	
17CN	MES02	2	PA	RT -]	EN B BAS EN	GINEE ICS OI GINEE	RING F MEC RING	CHANI	CAL		ES		2	0	0	2
				(C	ommo	n to Al	l Bran	ches)								
PREA	AMBL	Æ										I	·			
Basic Mechanical Engineering gives the fundamental ideas in the areas of engineering design, manufacturing and Automobile engineering. An engineer needs to understand, the basic manufacturing techniques and working principle of an Automobile Engineering Components.																
PREREQUISITE																
NIL																
COURSE OBJECTIVE																
1	1 To demonstrate the principles of casting and metal joining processes in manufacturing.															
2	То	descri	be and	to appl	y the in	n depth	knowl	edge in	autom	otive er	igines a	nd imp	orta	nt co	mpone	nts.
COU	RSE (OUTC	OMES :	:												
On th	e succ	essful c	complet	ion of	the cou	urse, stu	idents v	will be	able to							
CO1.	Illustr	ate the	applica	ation of	f castin	g and r	netal jo	oining p	rocess	es in ma	inufactu	ring			Apply	
CO2.	Demo	nstrate	the ope	ration	of auto	omotive	engine	es and in	mporta	nt comp	onents				Apply	
MAP	PING	WITH	I PRO	GRAM	IME C	OUTCO	MES .	AND P	ROGI	RAMM	E SPE(CIFIC	OU'	тсо	MES	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	O1	PSO2	PSO3
CO1	S	М	М	L	L	М	-	-	-	-	-	М]	L	-	-
CO2	S	М	L	L	L	М	-	-	-	-	-	М]	L	-	-
S- Sti	S- Strong; M-Medium; L-Low															
SYLI	SYLLABUS															
FOU	NDRY	AND	WELD	DING												

Foundry: Introduction to Casting - Types, Pattern- Definition, Function. Foundry tools. Green Sand Moulding application.

Welding: Introduction to welding, Classification – Gas welding, Arc Welding, TIG, MIG, Plasma – Definitions. Arc Welding - Methods and Mechanisms – Applications.

AUTOMOTIVE ENGINES AND COMPONENTS

Introduction, Two stroke and four stroke cycle – Petrol and Diesel Engines - Construction and working,

Fundamentals of automotive components - Brakes, Clutches, Governor, Flywheel, Axles, Drives etc., Fuel supply systems, Exhaust emission and control.

TEXT I	KT BOOKS													
1	Basic Civil and Mec	hanical Engineering, Sch	nool of Mechanical En	gineering Sciences, VMU, Salem										
REFER	ENCE BOOKS													
1	K.Venugopal, Basic M	Iechanical Engineering,	Anuradha Publication	s, Chennai										
2	NR. Banapurmath, Ba	sic Mechanical Engineer	ring, Vikas Publication	ns, Noida										
3	TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai													
COURS	SE DESIGNERS													
S.No	Faculty Name Designation Dept / College Email id													
1	S. Duraithilagar Associate Professor Mech / VMKVEC sduraithilagar@vmkvec.edu.in													
2	T.Raja	Assistant Professor	Mech / VMKVEC	rajat@vmkvec.edu.in										

17EE

1 7 FF	FS03	E	BASICS	S OF E	LECTI FN(RICAL	AND I	ELECI	RONI	CS	Categ	ory	L	Т	P C	Credit
1766	L 505		A.	BASI	C ELE	CTRI	CAL E	NGINE	CERINO	G	FC(E	S)	2	0	0	2
PREA It is a discuss gradua	MBLE prelim sed here tes.	inary c ein are	course project	which l ted to d	nighligh leliver (nts the explana	basic c tion or	concepts a basic	s and c electric	outline o al engin	f Electr eering f	ical e for beg	ngi gini	neering ners of	. The c all engi	oncepts
PRER	EQUIS	SITE –	Nil													
COUR	RSE OF	BJECT	IVES													
1	To un engin	ndersta: eering.	nd the	electric	al inve	ntions,	basic o	concept	s of A	C and D	C circu	iits an	d b	basic la	ws of el	ectrical
2	To g meas	ain kno uring ir	owledge strume	e about nts.	the w	orking	princij	ole, con	nstructio	on, appl	ication	of D	Ca	ind AC	machir	nes and
3	To ur	nderstar	nd the f	undame	entals of	f safety	proced	ures, Ea	arthing	and Pow	ver syste	em.				
COUR	URSE OUTCOMES															
On the	succes	sful co	npletio	n of the	course	, studer	nts will	be able	to							
CO1: I and bas	Explain sic laws	the even s of elec	olution ctrical e	of elect	tricity, 1 ring.	name o	f the in	ventors	, electri	ical quar	ntities	Reme	mb	er		
CO2: I	Demons	strate O	hm's a	nd Fara	day's L	aw.						Apply	7			
CO3: U and its	Underst applica	and the ations.	basic o	concept	s of me	asuring	instrur	nents, e	electrica	l machir	neries	Under	sta	nd		
CO4: machir	Analyz neries a	e the nd ener	various gy effic	types cient eq	of ele uipmen	ctrical t.	loads,	power	rating	of elec	trical	Analy	ze			
CO5: I	Explain	the ele	ctrical s	safety a	nd prot	ective d	levices.					Under	sta	nd		
CO6: 0 of conv	Company vention	e the v al and r	arious 10n-cor	types el ventior	lectrical	l power ces.	genera	ation sy	stems b	by applic	ation	Analy	ze			
MAPP	PING V	VITH I	PROGI	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	IME SP	ECIFIC	C OUI	ſC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2	PSO3
CO1	S	М	L		S							L		М		
CO2	S	М	S	S					М	-		М		М	L	
CO3	L	S	L		S					L		L		L	L	
CO4	S	М	S	L	L	S	S			S		L		М	L	
CO5	L	М	S	М		S	М	М		S		L				L
CO6	S	L	S	L	М	S	S			М		L		L		L
S- Stro	ong; M-	Mediur	n; L-Lo)W				1	1	1	<u>ı</u>	1			1	1

Т

SYLLABUS

HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor & vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials - Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domestic load. Energy Efficient equipments – star ratings.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.
- 4. P. Selvam, R. Devarajan, A.Nagappan, T. Muthumanickam and T. Sheela"Basic Electrical and Electronics Engineering", First Edition, VMRFDU, Anuradha Agencies, 2017

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

	17EEES03BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING B. BASIC ELECTRONICS ENGINEERINGCategoryLTPCreditEC(ES)															
17EE	ELECTRONICS ENGINEERING B. BASIC ELECTRONICS ENGINEERING EAMBLE															
PREA The co engined transist etc. It c PRER	MBLE ourse a ering c tors. It o crafts th QUISI	ims to oncepts enables le stude FE – N	impar the stunts to g	t funda course ident to et expe	imental begins design rtise in	knowl with small modern	ledge o classifio digital n comm	on elec cation of logics l unicatio	tronics of vario ike mul on syste	compor ous activ ltiplexer, ems.	nents, dig ve and j demulti	gital log passive plexer, e	gics and compon encoder,	l cor ents, decc	nmun diod oder c	ication es and ircuits,
COUR	SE OB	JECT	IVES													
1	To lea	rn and	identify	variou	s active	and pa	ssive c	ompone	ents and	their wo	orking pr	inciples.				
2	To un	derstan	d the nu	ımber c	onversi	on syst	ems.									
3	To lea	rn the c	ligital l	ogic pri	nciples	and rea	alize ad	ders, m	ultiplex	er, etc.,						
4	To un	derstan	d the ap	plicatio	on orien	ited con	cepts in	n the co	mmuni	cation sy	vstems.					
COUR	SE OU	TCON	1ES													
On the	success	sful con	npletio	n of the	course,	studen	ts will	be able	to							
CO1. electro	Interpre nic com	et work ponent	ting pr s like re	inciple esistors	and aj , capaci	oplication tors, in	on of ductors	various , diodes	active and tra	and pa ansistors	ussive	Jndersta	nd			
CO2. 0	Constru	et the re	ectifiers	and reg	gulators	circuit	s and e	xplore t	heir op	erations.	A	Apply				
CO3. operati	Execute ons.	e num	ber sys	stem c	onversi	ons ar	nd com	npute s	several	digital	logic	Apply				
CO4. 1	Design	adders,	Multip	lexer, I	De-Mult	iplexer	, Encoc	ler, Dec	oder ci	rcuits.	I	Apply				
CO5. A the UH	Apply tl ID, OLI	he mod ED, HD	ern tecl R.	nnologi	es in de	evelopii	ng appl	ication	oriente	d gadget	s like	Apply				
MAPP	ING W	ITH P	ROGR	RAMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPI	ECIFIC	OUTCO	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	SO2	PSO3
CO1	М	М							М				-		-	-
CO2	S	М	М	М			М		М			М	-]	М	-
CO3	S	М	М						М				S		-	-
CO4	S	М	М	М			М		М			М	М		-	-
CO5	S	М			М		М		М	М		М	-		-	М
S- Stro	ng; M-l	Mediun	n; L-Lo	W												
SYLL	ABUS															

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17CS	ES05	Р	ROGI	RAMM	ING I	N PYT	HON	(CATEO	GORY	L	Т	Р	CRE	DIT
									ES	5	3	0	0		3
PREA The pu code fo	MBLE arpose correction or difference	of this c ent op	ourse i erating	s to int system	roduce is along	Python g with a	, a reman pplication	rkably on don	power nain. Py	ful dynai ython has	nic pro s evolve	grammi ed on mo	ng lang ore popi	uage to ular and	write 1
powert	ful oper	n sourc	e progr	ammin	g tool				-						
PRER NIL	QUISI	ТЕ													
COUF	RSE OF	BJECT	IVES												
1	To pr	ovide b	asic kr	nowledg	ge on P	ython p	rogramr	ning c	oncepts	8.					
2	To int	roduce	differe	ent met	hods in	list, st	ring, tup	le, dict	tionary	and sets.					
3	To co	mpute	differe	nt prog	rams u	sing py	thon con	trol st	atemen	ts.					
4	To lea	ırn abo	ut diffe	erent fu	nctions	s in pytł	non.								
5	To co	mpute	the exc	eption	handlir	ng funct	tions, fil	e conc	epts an	d CSV a	nd JSO	N.			
COUR	SE OU	JTCO	MES												
On the	succes	sful co	mpletio	on of th	e cours	se, stude	ents will	be abl	le to						
CO1. I method	Learn p ds using	ython s g variou	tateme 1s exan	nts, cor	nments ograms	s and in	dentation	n, toke	ens, inp	ut and ou	ıtput	Unders	tand		
CO2. /	Apply th	ne diffe	erent m	ethods	involve	ed in Li	st, String	g, Tup	les and	Dictiona	ıry.	Apply			
CO3. I	Design	solutio	ns for c	complex	k progr	ams usi	ng decis	ion m	aking a	nd loopi	ng	Apply.			
statem	ents.														
CO4.A	Apply th	e funct	ion pro	ograms	with al	l the co	ncepts li	ke lan	nbda, d	ecorators	s and	Apply.			
genera	tors.														
CO5. 0	Comput	e the e	xceptio	on hand	ling pro	ograms,	, file con	cept p	rogram	is and		Apply			
unders	tand the	e conce	pts of o	CSV ar	id JSO	N.								70	
MAPI	PING V	VIIH I	PROG	KAMN	IE OU	TCOM	IES AN	D PRO	JGRA.	MME S	PECIF		COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO 3
CO1	S	М	М	М	М	-	-	-	-	-	-	-	M	Μ	М
CO2	S	М	M	M	М	-	-	-	-	-	-	-	S	Μ	М
CO3	M	S	S	S	М	-	-	-	-	-	-	-	M	M	М
CO4	S	S	S	S	M	-	-	-	-	-	-	-	S	S	M
CO5	S	М	M	М	М	-	-	-	-	-	-	-	S	М	М
S- Stro	ong; M-	Mediu	m; L-L	ow											

SYLLABUS

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

ÚNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionary operations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUF	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
		-	-	
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

		El F	NGINE PART A	ERING - BAS	SKIL	LS PF /IL EN	RACTI IGINE	CE LAB ERING	6	Categor	ry	L	Т	Р	С	redit
17CN	AES81		(Comm	on to A	All Bra	anches)		ES		0	0	2		2
PRE	AMBL	E														
Engin	eering S	skills Pı	actice is	s a hand	ls-on tra	aining	practice	e to Mech	nanical,	Civil and	d Mecha	tronics	Engine	ering	stude	ents. It
deals	with fitt	ing, car	pentry,	sheet m	etal and	d relate	d exerc	ises. Als	o, it wi	ll induce	the habi	t of sele	ecting ri	ght to	ools,	
plann	ing the j	ob and	its exec	ution												
PRE	REQU	ISITE														
Nil																
COU	RSE O	BJEC	TIVES	5												
1	To und	erstand	l the ba	sic con	cepts o	of surv	eying a	and cons	structio	on materi	ials.					
2	To imp	art bas	ic knov	vledge	about l	buildin	g com	ponents								
COU	RSE O	OUTCO	OMES													
On	the suc	cessful	compl	etion o	f the co	ourse,	studen	ts will b	e able	to						
C01	.Prepare	e the di	fferent	types of	of fittin	ıg.							Apply			
CO2	.Prepare	e the di	fferent	types of	of joint	s using	g wood	len mate	erial				Apply			
MAI	PPING	WITH	PROC	GRAM	ME O	UTCO	OMES	AND P	ROG	RAMMI	E SPEC	CIFIC	OUTC	OMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	L	L	L	L	L	L	L	L	L	L	L	-		S	-
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L		-	М
S- St	rong; M	[-Medi	um; L-l	Low	1						1					
SYLI	LABUS															
<u>Build</u>	ings:															
1	. Study	of plu	nbing a	nd carp	entry co	ompone	ents of 1	residentia	al and i	ndustrial	building	gs, Safet	y aspec	ts.		
Plum	hing W	orks	e e	1	•	-										

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- 3. Study of pipe connections requirements for pumps and turbines.
- 4. Preparation of plumbing line sketches for water supply and sewage works.
- 5. Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- 6. Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- 7. Study of the joints in roofs, doors, windows and furniture.
- Hands-on-exercise: Wood work, joints by sawing, planning and cutting.

TEXT BOOK

1. Basic civil engineering Lab Manual by Department of Civil Engineering, VMRF.

COUF	RSE DESIGNERS			
S.N	o Name of the Faculty	Designation	Name of the College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

		ENG	GINE	ERINO	G SKII	LLS P	RACT	ICE	Cate	gory	L	Т	Р		Credit
17CN	IES81		B. B	ASIC ENG	MEC INEE	HANI RING	CAL		FC(ES)	0	0	2		1
Pream Works found	nble shop is ry and y	a han welding	ds-on g relat	trainin trainin trainin	ng pra	ctice t Also,	o Mec it will i	hanica induce	al Eng e the h	ineerin abit of	ng stud select	dents. ing rig	It deals ht tools,	with fi plannin	tting, carpentry, g the job and its
Prere	anisite	-NIL													
Cours	se Obie	ctive													
1	To per	form th	ne prac	ctice in	differ	ent typ	es of fi	tting	proces	ses.					
2	To util	ize the	differ	ent typ	e of jo	ints us	ing wo	oden	materia	als.					
3	To perform and acquire in depth knowledge in metal joining processes.														
4	To demonstrate the pattern using foundry processes.														
Cours	se Outc	omes:	On th	ne succ	essful	comp	letion o	of the	cours	e, stud	lents w	vill be	able to		
CO1.	Iden	tify the	differ	ent typ	bes of f	itting	using N	AS pla	nte.					Apply	
CO2.	Pred	ict the	differe	ent type	es of jo	oints u	sing wo	ooden	materi	al				Apply	
CO3.	Utili	ze the c	differe	ent type	es of jo	ining	process	in me	etal by	Arc W	Velding	5		Apply	
CO4.	Mak	e use o	f diffe	erent ty	pes of	green	sand m	ould						Apply	
Mapp	lapping with Programme Outcomes and Programme Specific Outcomes														
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO3
CO1	S	I I I I I I I I I S M L L L - - - - - - -													
CO2	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	М	L	L	L	-	-	-	-	-	-	-	L	_	_
CO4	S	M	L	L	L	-	-	_	_	-	_	-	L	_	_
S- Str	rong; M	I-Medi	um; I	L-Low			II								
Syllab	ous														
LIST	OF EX	(PERI	MEN'	TS											
Tee –	Fitting														
Vee –	Fitting	2													
Prepa	ration o	f a mou	uld for	r a sing	gle piec	e patte	ern								
	ration o	$a \mod C$	arpont	r a spil	l piece	patter	n								
Dove	Lap Joi Tail Ioi	int in C	'arnen	trv											
Lap Jo	oint - V	Velding	n pen	uy											
Butt J	tt Joint – Welding														
Text]	xt Books														
1	BAS	SIC M	ECH/	ANICA	L EN	GINE	ERIN	G, LA	B MA	NUAI					
Refer	ence B	ooks													
1	K.Ve	enugop	al, Ba	sic Me	chanic	al Eng	ineerin	g, An	uradha	Public	cations	s, Chen	inai		
2	NR.	Banapı	ırmatl	n, Basi	c Mech	nanical	Engin	eering	g, Vika	s Publi	ication	s, Noie	da		
Cours	se Desi	gners					D				1				
S.No	Facu	lty Nar	ne	Desig	nation		Depar the C	rtmen ollege	t / Nar e	ne of	Ema	il id			
1	Dr. Krisl	V. nnan	K.	Assoc Profes	iate sor		Mech	1 / VM	IKVEO	2	vkkr	<u>ishnan</u>	@vmkv	ec.edu.ir	<u>1</u>
2	B.SELVAAssistantMech/AVITselvababu@avit.ac.inBABUProfessor														

17EE]	ES82		ENC	GINEE	RING	SKILL	CTICE	LAB		Catego	ory	L	Т	Р	C	redit	
			A. B	ASIC I	ELECI	'RICA	L ENG	INEEF	lNG		FC(E	S)	0	0	2		1
PREAN It is a lat types of	MBLE aborato f earthi	ory cour ing met	rse whi hods.	ch fami	liarizes	the ba	sic elec	trical w	/iring, r	neasurer	nent of	electi	rical	l quanti	ties a	and v	various
PRER	QUISI	TE – N	ΠL														
COUR	SE OB	JECT	IVES														
1	To lea	arn the	residen	itial wir	ing and	l variou	s types	of elect	trical w	iring.							
2	To m	leasure	the vari	ious ele	ctrical	quantiti	les.										
3	To kr	now the	necess	ity and	types c	of earthi	ing and	measur	ement (of earth	resistan	ce.					
COUR	SE OU	JTCON	ЛES														
On the	success	sful cor	npletio	n of the	course	, studer	nts will	be able	to								
CO 1: I	mplem	ent the	various	s types	of elect	rical wi	iring.					Appl	у				
CO 2: N	Measur	e the fu	Indame	ntal par	ameters	s of AC	circuit	s.				Anal	yze				
CO 3: N	Measur	e the ea	urth resi	istance	of varic	ous elec	trical n	nachine	ries.			Appl	у				
MAPP	ING W	VITH F	ROGI	RAMM	E OUT	COMI	ES ANI	D PRO	GRAM	ME SPI	ECIFIC	C OU'	ГС	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PS	02	PSO3
CO1	S	М	L		S							L	r	М	I	L	
CO2	S	М	S	S					М			M	[М	I	Ĺ	
CO3	L	S	L		S					L		L	r	М	I	Ĺ	
S- Stroi	ng; M-l	Mediur	n; L-Lc	w				<u>.</u>				<u>.</u>					
LIST (1. Re 2. Fl 3. St 4. M 5. M 6. M REFEI)F EX esidenti uoresco air caso easuren easuren easuren RENC	PERIN ial hous ent lam e wiring ment of ment of ES	IENTS se wirin p wirin g. electri energy resista	ig using g. cal quan / using : ince to e	switch ntities – single p earth of	es, fuse - voltag bhase er an elec	e, indica e, curre nergy m trical e	ator, lan ent, pow teter. quipme	np and 6 /er & po nt.	energy n ower fac	neter. tor in R	LC ci	rcu	it.			

1. Laboratory Reference Manual.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

1765	17EEES82 ENGINEERING SKILLS PRACTICES LAB PART B - BASIC ELECTRONICS ENGINEERING								0	Category	L	Т	Р	Credit	
1/1/1	21.002	PA	RT B -	BASIC	C ELE(CTRON	NICS E	NGIN	EERIN	G	FC(ES)	0	0	2	1
PREA This c electro	PREAMBLE This course is to provide a practical knowledge in Basic Electronics Engineering. It starts with familiarization of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects.														
PRER	PRERQUISITE – Nil														
COUI	COURSE OBJECTIVES														
1	1 To familiarize the electronic components, basic electronic equipments and soldering techniques.														
2	To stu	dy the c	characte	ristics of	of Diod	es, BJT	and FI	ET.							
3	To unc	lerstand	l the pri	inciples	of vari	ous dig	ital log	ic gates	•						
4	To unc	lerstand	l the co	ncept of	f basic	modula	tion tec	hnique	s.						
COUI	RSE OU	TCON	IES												
On the	e success	sful con	npletior	n of the	course,	studen	ts will	be able	to						
CO1.	Construe	et exper	riments	for PN	and Ze	ner dio	de char	acterist	ics				Underst	and	
CO2. 2	Demons	trate th	e funda	mentals	s of solo	lering t	echniqu	ies.					Apply		
CO3.	Classify	the cha	racteris	stics of	Diodes	, BJT a	nd FET	•					Apply		
CO4.]	Distingu	ish bet	ween ar	nplitud	e and fr	equenc	y modu	lation t	echniqu	ies.			Apply		
CO5.	Verify th	ne truth	tables	of logic	gates (AND, O	OR, NC	DT, NA	ND, NC	OR, XO	R).		Apply		
MAP	PING W	ITH P	ROGR	RAMM	E OUT	COMI	ES ANI) PRO	GRAM	ME SP	ECIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO	1 PSC	D2 PSO3
CO1	S	М	-	-	-	-	-	-	М	-	М	-	-	Μ	-
CO2	М	М	М	-	-	-	-	-	М	-	М	-	Μ	-	-
CO3	S	М	-	-	-	-	-	-	М	-	М	-	-	-	-
CO4	S	М	-	-	-	-	-	-	М	-	М	-	М	-	М
CO5	CO5 S M M M - M								-	М	-	-			
S- Stro	S- Strong; M-Medium; L-Low														
LIST OF EXPERIMENTS 1. Identifying Electronics Components. 2. Practicing of Soldering and Desoldering. 3. Characteristics of PN junction Diode. 4. Characteristics of Zener diode. 5. Input & Output characteristics of BJT. 6. Transfer characteristics of JFET.															

- 7. Verification of Logic Gates.
- 8. Study of Amplitude Modulation.
- 9. Study of Frequency Modulation.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in	
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in	
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in	
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in	

1500000		Category	L	Т	Р	Credit			
17CSES83	PROGRAMMING IN PYTHON LAB	ES	0	0	4	2			
PREAMBLE			•						
This laboratory	enables the students clearly understand the basis	c concepts of pythe	on, contr	ol stat	ements	and file			
commands in p	ython.								
PRERQUISIT	`E								
NIL									
COURSE OU	TCOMES								
On the success	ful completion of the course, students will be ab	le to							
CO1. Learn Sy	O1. Learn Syntax and Semantics and create Functions in Python				Understand				
CO2. Handle S	trings and Files in Python.		I	Unders	stand				
CO3. Design so	olutions for complex programs using decision m	aking and looping	1	Apply					
statements.	statements.								
CO4.Understand Lists, Dictionaries in Python. Apply									
CO5. Compute	the exception handling programs		I	Apply					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S	М	М
CO2	S	М	L	-	-	-	-	-	-	-	-	-	S	М	-
CO3	S	М	М	-	-	-	-	-	-	-	-	-	S	М	М
CO4	S	М	М	-	-	-	-	-	-	-	-	-	S	М	-
CO5	S	М	М	-	-	-	-	-	-		-	-	S	М	М
S- Stro	ng; M-N	Medium	n; L-Lov	W											

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
3	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

1716	MEES84		ENG	SINEF	RING	GRAP	HICS		Catego	ory	L]	נ ח	P C	redit
17101	EES8	4		(Theo	ry & Pi	ractice)		FC(E	S)	1	()	4	3
Prean	ıble														
Engine	eering	Grap	hics is re	eferred	as langi	lage of	f enginee	ers. An	engine	er nee	ds to u	nderst	tand the	e physical g	geometry
of any	objec	t thro	ugh its c	orthogr	aphic or	pictor	ial proje	ctions.	The kn	nowled	lge on o	engin	eering	graphics is	essential
in pro	posing	g new	product	throug	gh drawi	ings an	d interp	reting	data fro	om exi	sting d	rawin	gs. Thi	is course d	eals with
orthog	raphic	and p	pictorial	projec	tions, se	ctional	l views a	nd dev	velopme	ent of	surface	s.			
Prere	quisite	e – NI	L												
Cours	e Obj	ective	e												
1	Toi	impler	nent the	orthog	graphic p	oroject	ions of p	oints,	straight	lines,	plane s	surfac	es and	solids.	
2	То	constr	uct the c	orthogr	aphic pr	ojectio	ons of sec	tionec	l solids	and tr	ue shap	e of t	he sect	ions.	
3	To develop lateral surfaces of the uncut and cut solids.														
4	То	draw t	he picto	rial pro	ojections	s (isom	etric and	l persp	ective)	of sim	ple sol	ids.			
5	Tos	sketch	by free	hand t	he ortho	graphi	c views f	from tl	ne giver	n picto	rial vie	W.			
Cours	e Out	come	s: On th	e succ	essful c	omple	tion of tl	he cou	rse, stu	idents	will b	e able	e to		
CO1	To Interpret the physical geometry of any object through its orthographic or UNDERSTAND														
	pict	orial p	projectio	ns											
CO2.	App	oly in	the form	n of d	rawing	of the	orthogra	aphic 1	projecti	ons of	f points	s, stra	ight	Apply	
GOO	line	s, plai	ne surfac	ces and	solids.		6 .1	.1					1	. 1	
CO3.	To establish in the form of drawing of the orthographic projections of sectioned Apply														
004	solids and true shape of the sections.														
CO4.	Dev	elop I	ateral su	irfaces	of the s	olid se	ction and	1 cut se	ection o	of solic	IS. 1 1' -			Apply	
C05.	Бке	ten th	free her	al proj	ections (1some	ric and p	berspec	ctive) of	r simp	le solic	IS.		Apply	
CO6.	108	apply	free har	ia sket	ch of the	e ortho	graphic	views	from the	e give	n pictoi	tal vi	ew.	Apply	
Mapp	ing w	ith Pr	ogramn	ne Ou	tcomes a	and Pr	ogramn	ie Spe	cific O	utcom	es				1
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
CO1	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
CO2	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
CO3	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
CO4	S	Μ	L	S	S	-	-	-	-	-	-	-	L	-	
CO5	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
CO6	S	S		S	L	-	-	-	-	-	-	-	L	-	
S-Str	ong; I	M-Me	dium; I	L-Low											
Syllab	us The cur				TLAND	GIZEZ									
PLAN	E CU	KVE	S AND	FKEE	HAND	SKEI	CHING	r							
Conics	s - Co	nstruc	ction of e	ellipse-	- First a	ngle pr	ojection	– layo	ut view	s – De	evelopi	ng vis	ualizat	ion skills t	hrough
free ha	and sk	etchin	g of mu	ltiple v	views fro	om pict	orial vie	ws of	objects.		_	-			-
PROJ	ECTI	ION (OF POI	NTS, I	LINES										
Projec	tion o	f noin	ts Proje	ction of	f straig	nt lines	located	in the	first au	adrant	· inclin	ed to	hoth nl	anes _	
Deterr	ninatio	$\frac{1}{2}$ on of t	true leng	ths an	d true in	clinati	ons - rot	ating 1	ine met	hod o	nlv	cuito	bour pi	anes	
PROJ	ECTI	ON ()F SOL	IDS			100				j •				
Projec	Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference														
plane	by cha	inge o	f positio	n meth	nod.										
SECT	ION	OF SO	OLIDS A	AND I	DEVEL	OPME	ENT OF	SURF	FACES						
Sectio	ning o	f abov	ve solids	in sin	ple vert	ical po	sition by	cuttir	ig plane	es incli	ned to	any o	ne refe	rence plane	e and
perper	ndicula	ar to tl	he other	– Obta	ining tr	ue shap	be of sect	tion. D	evelop	ment o	of latera	ıl surf	faces of	f simple an	d
trunca	ted so	lids li	<u>ke Pris</u> m	is, pyra	<u>mids, c</u>	ylinder	s and co	nes.							
ISOM	ETR	IC VI	EW AN	D PE	RSPEC	FIVE	PROJE	CTIO	N						

Princip	les of isometric View – is	sometric scale – isometr	ric view of simple soli	ds- Introduction to Perspective						
projecti	ion									
Text B	ooks									
1	Natarajan K V, "Engine	ering Graphics", Tata N	AcGraw-Hill Publishin	ng Company Ltd. New Delhi.						
2	K.Venugopal and V.Pra	bhu Raja, "Engineering	Graphics", New Age	International Private Limited.						
3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.									
Refere	ence Books									
1	N.D. Bhat and V.M. Par	nchal, Engineering Grap	phics, Charotar Publis	ners 2013						
2	E. Finkelstein, "AutoCAD 2007 Bible", Wiley Publishing Inc., 2007									
3	R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.									
4	DhananjayA.Jolhe, "Er	ngineering Drawing w	ith an Introduction	to AutoCAD", Tata McGraw Hill						
4	Publishing Company Li	mited, 2008.								
5	G.S. Phull and H.S.Sand	lhu, "Engineering Grap	hics", Wiley Publicati	ons, 2014.						
Course	e Designers									
			Department /							
S.No	Faculty Name	Designation	Name of the	Email id						
	College									
1	Prof. N.Rajan	Associate Professor	Mech / VMKVEC	rajan@vmkvec.edu.in						
2	Prof. M.SARAVANAN	Asst. Prof	Mech / AVIT	sarayanan@avit ac in						
-				Sur u v unun C u vit. do. m						

17FFCC01	FLECTRIC CIRCUIT ANALYSIS	Category	L	Т	Р	Credit
TTELCCOT		CC	3	0	0	3

PREAMBLE

Electric circuit theory is the fundamental theory upon which all branches of electrical engineering are built. Many areas of electrical engineering, such as power, electric machines, control, electronics, communications, and instrumentation, are based on electric circuit theory. Therefore, the basic electric circuit theory course is the most important course for an electrical engineering student, and always an excellent starting point for a beginner in electrical engineering education. Circuit theory is also valuable to students specializing in other branches of the engineering because circuits are a good model for the study of energy systems in general, and because of the applied mathematics, physics, and topology involved.

PREREQUISITE

17EEES82- Basic of Electrical and Electronics Engineering, 17MABS01-Engineering Mathematics

COURSE OBJECTIVES

1	To understand basic circuit concepts.								
2	To study networks and solution of DC and AC circuits.								
3	To understand series and parallel resonance concepts and analysis of cou	apled circuits.							
4	To study protection of balanced and unbalanced loads and measurement of power and power factor in three phase circuits.								
5	To understand transient analysis of RL, RC and RLC circuits with DC and sinusoidal excitations.								
COURS	E OUTCOMES								
On the su	ccessful completion of the course, students will be able to								
CO1	Apply Kirchhoff's current and voltage law to simple circuits and Solve complex circuits using Mesh & Nodal Methods.	Apply							
CO2	Apply Network theorems to solve simple and complex linear circuits	Apply							
CO3	Solve the Series and Parallel resonance circuit, analyze the performance of single & double tuned circuits.Analyze								
CO4	Explain three phase balanced and unbalanced star, delta network	Understand							

CO4	Explain three p	hase balanced	d and unbala	inced	star, de	ta network	C .	Understand
CO5	Develop the LaplaceTransfe	Transient orm,	response	of	RLC	circuits	using	Analyze and create
MAPPIN	NG WITH PRO	GRAMME	OUTCOME	ES AN	ND PRC	GRAMM	IE SPEC	CIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	L	М	L	-	Μ	S	Μ	Μ	S	-	Μ
CO2	S	S	М	S	L	-	-	-	-	-	-	-	S	М	М
CO3	S	Μ	-	S	S	-	М	-	Μ	L	L	Μ	S	-	-
CO4	Μ	М	М	М	S	-	М	-	-	L	L	М	S	-	-
CO5	М	Μ	М	М	S	-	М	-	Μ	L	L	М	S	Μ	М

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CIRCUIT CONCEPTS

Review of basic concepts- DC & AC circuits - R, L, and C elements phasor diagrams-Complex impedance - Real & Reactive power- Series & Parallel circuits– Formation of matrix equations and analysis of complex circuits using mesh- Current and nodal - Voltage methods.

NETWORK THEOREMS AND TRANSFORMATIONS

Voltage – Current – Source transformation. Star Delta transformation - Superposition theorem – Reciprocity theorem – Substitution theorem – Maximum Power Transfer theorems – Thevenin's theorem – Norton's theorem and Millman's theorem with applications.

RESONANCE AND COUPLED CIRCUITS

Series resonance and parallel resonance – Bandwidth and Q factor. Inductively coupled circuits –Co-efficient of coupling - Dot convention - Multi winding coupled circuits - Analysis of coupled circuits.

THREE PHASE CIRCUITS

Analysis of three phase 3 wire and 4 wire circuits with star and delta connected balanced and unbalanced loadsphasor diagram of Voltages and Currents – Measurement of power and power factor in three phase circuits by using single, two and three Watt meter method.

TRANSIENT ANALYSIS

Transient response – Natural response - DC response of RL, RC and RLC circuits – sinusoidal response of RL, RC, RLC circuits

TEXT BOOKS

1. Dr.S. Arumugam, Premkumar, Circuit Theory - Khanna publishers, 1991

2. Sudhakar, A. and Shyam Mohan S.P.,'Circuits and Network Analysis and Synthesis', Tata McGraw-Hill Publishing C.Ltd., New Delhi, 2006.

3. A Nagoor Kani, Circuit Theory – Sriram publications -2016

REFERENCES

- 1. Prof. T. Nageswara Rao, "Electric circuit analysis" A.R.Publications.
- 2. Hyatt, W.H. Jr and Kemmerly, J.E., 'Engineering Circuits Analusis', McGraw-Hill International Editions, 2002.
- 3. Edminister, J.A., 'Theory and Problems of Electric Circuits', Schaum's outline series McGraw Hill Book

C	Company, 5 th Edition, 2011.										
COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	e-Mail ID							
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in							
2.	D. SARANYA	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in							

17MECC06		ŀ	KINEMATIC MACHINE		MATICS OF		Category		L		Т		Р	Credit		
					IES		CC		3	0		0		3		
Prea	mble															
The mach	The students completing this course are expected to understand the role of the kinematics of machinery and its applications.															
Prere	Prerequisite : Engineering Mechanics															
Cour	Course Objective															
1	To demonstrate about various mechanisms.															
2	Solve p	proble	ms inv	olving	g veloci	ity an	d acce	lerati	on of va	arious	s mecha	nisms	5.			
3	Constr	Construct various motions of follower and cam profile														
4	To study and apply various types of Gears.															
5	To study and apply various types of Friction drives.															
Course Outcomes: On the successful completion of the course, students will be able to																
CO1.	Expl DOF	Explain the principles of kinematic pairs, chains and their classification, Understand DOF, inversions, equivalent chains and planar mechanisms.														
CO2.	Dete	Determine the position, velocity and acceleration of planer mechanisms. Apply														
CO3.	Cons	Construct cams and followers for specified motion profiles. Apply														
CO4.	Cons requi	Construct gear tooth geometry by select the appropriate gears for the Apply required applications														
CO5.	Discuss the friction and its effects in mechanical components Apply															
Mapping with Programme Outcomes and Programme Specific Outcomes																
CO	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PO	PO	PS	PSO	PSO3	
	1	2	3	4	5	6	7	8	9	10	11	12	01	2	1505	
CO1	S	Μ	L	-	L	L	-						-	-	-	
CO2	М	S	М	М	-	L							L	-	L	
CO3	S	М	L	-	L	L							М	_	М	
CO4	М	L	S	L	-	L							М	-	М	
CO5	S	Μ	L	-	-	L							L	-	L	
S-St	rong; M	I-Med	lium;	L-Lov	V											
Sylla	bus															
BAS	1C2 OF	ME	HAN	12M												
Rigid body, Mechanism and Machine, Kinematic Link, Kinematic Pair -Degree of Freedom - Mobility-Kutzbach criterion- Gruebler's Criterion for degrees of freedom - Grashoff's law-Kinematic Inversions of 4-bar chain and slider crank chains-Mechanical Advantage-Transmission angle-Description of common Mechanisms-Single - Double and offset slider mechanisms - Quick return mechanisms - Ratchets and escapements - Indexing Mechanisms - Rocking Mechanisms - Straight line generators.

KINEMATICS OF LINKS

Velocity analysis: Instantaneous centre method, Kennedy's theorem, Locating instantaneous centres, Relative velocity method for slider-crank mechanism, and crank and slotted lever mechanism. Acceleration analysis: Klein's construction, slider crank mechanism, Coriolis acceleration component, Crank and slotted lever mechanism.

KINEMATICS OF CAM

Classifications - Displacement diagrams-parabolic- Simple harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion.

GEARS

Gears and Gear trains: Classification, Terminology, Law of Gearing, Interferences, methods of avoiding interferences, path of contact, arc of contact. Simple gear train, compound gear train, reverted gear train, planetary/epicyclic gear train, Sun and planet gear.

FRICTION

Surface contacts-Sliding and Rolling friction - Friction drives – Friction in screw threads - Friction clutches - Belt and rope drives- Friction aspects in Brakes.

1 0.10 2								
1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd. New Delhi.							
2	Khurmi.R.S Gupta, "Theory of Machines". S.Chand & Co., 2001							
3	Dr. Sadhu Singh, "Theory of Machines", Pearson Education							
Refere	nce Books							
1	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 2005							
2	Ghosh A and A.K.Mallick, "Theory of Mechanisms and Machines", Affiliated East-West Pvt.Ltd., New Delhi.							
3	Shigley J.E and Vickes J.J, "Theory of Machines & Mechanism", McGraw Hill, 2000							
4	P L Ballaney, "Theory of Machines", Khanna Publisher							
5	Kenneth J Waldron, "Kinematics, Dynamics and Design of Machinery", Gary L Kinzel Wiley Edition.							
Course	e Designers							

S.No	Faculty Name	Designation	Department / College	Email id
1	Dr. S.VENKATESAN	Professor	Mech / VMKVEC	svenkatesan@vmkvec.edu.in
2	Prof. J. RABI	Associate Professor	Mech / VMKVEC	jrabi@vmkvec.edu.in
3	S. ASHOK KUAMR	Assistant Professor	Mech / AVIT	ashokkumar@avit.ac.in

17ECCC	7FCCC01 SEMICONDUCTOR DEVICES									egory	L	Т	Р		Cred	it
IILCCC	.01				CION	DLVI			С	C	3	0	0		3	
PREAMBLE																
The course	The course is designed to teach the physical principles and operational characteristics of semiconductor devices with															
emphasis o	mphasis on metal-oxide systems, bipolar, high-electron mobility, and field-effect transistors. Topics also include SCR,															
TFET, HE	ET, HEMT, Silicon Nano Wire tubes. The course provides advanced background in solid state electronic devices and is															
intended to	ended to help students to develop their basic analytical skills and continue advanced research in the varied branches of															
semiconduc	semiconductor devices.															
PRERQUI	PRERQUISITE NIL															
	ORII				• • • •		1 . 1								7	
	th the	nasis t	lication	SICS OI	semicor	auctor	s and th	ie work	ing of s	semicond	uctor dev	lces II	ke PN	and	Zener di	odes
2 To	imne	art kno	wledge	$\frac{5}{00}$ on wor	king pr	inciple	config	uration	operati	ional cha	racteristi	cs and	limitati	on	of BITs	
3 To	o unde	erstand	the co	nstructio	on and	Charact	eristics	of JFE	Ts and	MOSFE	raeteristi Fs.	co una	iiiiiiuui			
4 To	stud	y the w	vorking	princip	le and a	applicat	ions of	discrete	and in	tegrated	voltage 1	egulato	ors			
5 To	o fami	iliarize	with s	several	special	semico	nductor	device	es like	SCR, M	ISFET, 1	FET,	HEMT	and	Silicon	Nano
W	ire tu	bes.			1					,	,	,				
COURSE	COURSE OUTCOMES															
On the succ	cessfu	l comp	oletion	of the c	ourse, s	students	will be	able to	1							
CO1. Exp	lain t	he elec	ctron	transpo	rt proj	perties	and o	operation	n of s	semicond	uctor U	Jnderst	and			
devices lik	ke Di	ode a	nd thei	ir relev	ant ap	plicatio	ns like	HWR,	, FWR	l, Clipper	and					
Clamper, e	$\frac{\text{tc.,}}{\frac{1}{1}}$		• • • •	1	1 4	• ,•	(D ITT -	1: 00		<u>c</u>		1				
CO2. Quan	itify th	ne spec	afficatio	$\frac{n}{2}$ and $\frac{c}{2}$	haracter	ristics of	of BJT 1	n differ	ent con	figuratio	n. A	Apply				
and voltage	onstra e regu	lators	S and circuits	ripple i	actor v	alues o	f RC fi	liters ir	i simpl	e power	supply A	Apply				
CO4. Rela	te th	e const	ruction	and ch	aracteri	stics of	JFET a	nd its f	amilies		A	Apply				
CO5. Exan	nine	the cha	aracteri	stics an	d appli	cations	of spe	cial dev	vices lil	ke Shock	ley A	Apply				
Diode, Uni	juncti	on Tra	nsistor,	Photot	ransisto	ors, MIS	SFETs,	MESFE	ETs, etc	.,						
MAPPING	G WI	TH PR	ROGRA	MME	OUTC	OMES	AND	PROGI	RAMM	E SPEC	IFIC O	UTCO	MES			
COS P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PS	01	PSO2	PSO3
CO1	М	Μ	-	-	-	-	-	-	М	-	-	Μ	Μ		М	-
CO2	М	Μ	М	-	-	-	-	-	М	-	-	Μ	S		М	-
CO3	Μ	Μ	Μ	-	-	-	М	-	М	-	-	M	S		М	-
CO4	S	Μ	Μ	М	-	-	М	-	М	-	-	Μ	S		М	-
CO5	S	Μ	-	М	-	-	-	-	М	-	-	Μ	S		М	-

S- Strong; M-Medium; L-Low

SYLLABUS

SEMICONDUCTOR DIODES AND APPLICATIONS

Introduction, Semiconductor Materials - Ge, Si, and GaAs, Covalent Bonding and Intrinsic Materials, Energy Levels, n-Type and p-Type Materials, Semiconductor Diode, Resistance Levels, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Reverse Recovery Time, Diode Specification Sheets, Semiconductor Diode Notation, Diode Testing, Zener Diodes, Light-Emitting Diodes, Sinusoidal Inputs; Half-Wave Rectifier, Full-Wave Rectifier, Clipper, Clamper, Zener Diode, Voltage-Multiplier Circuits, Practical Applications

BIPOLAR JUNCTION TRANSISTORS

Introduction, Transistor Construction, Transistor Operation, Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Transistor Specification Sheet, Transistor Testing, Transistor Casing and Terminal Identification.

FIELD EFFECT TRANSISTORS

Introduction, Construction and Characteristics of JFETs, Transfer Characteristics, Important Relationships, Depletion-Type MOSFET, Enhancement-Type MOSFET, MOSFET Handling.

VOLTAGE REGULATORS

Introduction, General Filter Considerations, Capacitor Filter, RC Filter, Discrete Transistor Voltage Regulation, IC Voltage Regulators.

SPECIAL PURPOSE DEVICES

Introduction, Silicon-Controlled Rectifier, Basic Silicon-Controlled Rectifier Operation, SCR Characteristics and Applications, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFETs, TFETs, HEMTs, Silicon Nano Wire Transistor.

TEXT BOOK:

1. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education,

11th Edition, 2013.

REFERENCE BOOKS:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 2010.
- 2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford Press, 2009.
- 3. B L Theraja, R S Sedha, "Principles of Electronic Devices and Circuits", S.Chand, 2004.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr.P.Selvam	Professor	ECE	hodeee@vmkvec.edu.in									
2.	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in									
3.	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in									
4.	Mr. R. Karthikeyan	Assistant Professor	ECE	rrmdkarthikeyan@avit.ac.in									

17CVCC32
1,0,000

FLUID MECHANICS AND	Categor
STRENGTH OF MATERIALS	У
	CC

Categor y	L	Т	Р	Credit
CC	3	0	0	3

L

_

L

Preamble

The aim of the course is to understand the concepts of stress and strain and their uses, to understand the properties of fluid, Principles of fluid statics and dynamics.

Prerequisite

Nil

Course Objectives

1	1. To understand basic mechanical forces acting on rigid and deformable bodies.														
4	2. To draw shear force and bending moment diagram for various types of beams.														
(.	3. To form deflection equations of beams and columns for different end conditions.														
2	4. To	under	rstand	fluid	proper	ty and	l flow	chara	cterist	ics.					
4	5. To understand flow dynamics and measurement.														
Cours	e Out	tcome	s												
On th	e succ	essful	comp	letion	of the	cours	se, stu	dents	will be	e able to	С				
CO1	. C	omput	e resu	ıltant,	resolv	ve sev	veral c	concur	rent f	orces a	and als	o to aj	oply	Apply	
equil	ibriun	n conc	epts, (Comp	ite sin	nple st	resses	and s	trains						
Co2.	Pra	ctice s	shear f	force a	and be	nding	mome	ent co	mputat	tions a	nd cons	truct sł	near	Apply	
force	force and bending moment diagrams														
Co4.	Co4. Evaluation of beam deflection and slope Apply														
Co4.	Det	termin	e the	varia	tion (of pre	ssure	in fl	uid at	rest a	and cal	lculate	the	Underst	and
hydr	ostatic	force	s and	point	of app	licatio	n on a	a plane	e or cu	rved su	rface.				
CO5	. D	isting	uish t	betwee	n var	ious t	ypes	of flo	ws ar	nd deri	ve the	contin	uity	Apply	
equa	tion fo	or com	pressi	ble an	d inco	mpres	sible	flow							
Марр	ing w	ith Pr	ogran	nme (Dutcor	nes a	nd Pr	ogran	nme S	pecific	Outco	mes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	S	М	М	L	L	-	-	-	-	-	-	L	М	-	L
2	S	S	М	L	L	-	-	-	-	-	-	-	L	-	L
3	S	М	S	L	L	-	-	-	-	-	-	-	М		L
4	S	S	S	М	L	-	-	L	-	-	-	L	L	-	L

S- Strong; M-Medium; L-Low

Μ

Μ

S

Syllabus

Μ

5

STRESS- STRAIN AND DEFORMATION OF SOLIDS

L

М

Properties of material, Concept of Stress and Strain, Hook's Law, Stress Strain Diagram for structural steel and Non-ferrous materials. Poisson's Ratio & principles of superposition, Total elongation of tapering bars of circular and rectangular cross-sections. Elongation due to self-weight, volumetric strain. Expression for Volumetric strain, Elastic constants, relationship among elastic constants, compound bars Rigid and Deformable bodies – Strength- Stiffness and Stability – Stresses; Tensile- Compressive and Shear – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads.

BEAMS - LOADS AND STRESSES

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever- Simply supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Shear stresses in beams.

DEFLECTION OF BEAMS

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: Double integration method- Macaulay Method- and Moment-area Method –Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns – Introduction to curved beams.

FLUID PROPERTY AND FLOW CHARACTERISTICS

Surface tension – Capillarity – Viscosity – Newton's law – Fluid pressure and pressure head - Fluid velocity – Uniform and steady flow – Reynolds number - Classification as laminar and turbulent flow – Continuity equation.

FLOW DYNAMICS AND MEASUREMENT IN PIPE NETWORKS

Euler's and Bernoulli's Equations – Manometer, Venturi meter and orifice meter - Pressure losses along the flow – Categorisation into minor losses - Flow through circular pipes – Statement of Darcy – Weisbach equation – Friction factor – Pipes in series and parallel - Hydraulic gradient

Text Books

- 1. R. K. Rajput, 'Strength of Materials (Mechanics of Solids)', S. Chand & Company Ltd., 2003.
- 2. R.K., Bansal, A text book on Fluid Mechanics & Hydraulic Mechanics,- M/s. Lakshmi Publications (P) Ltd, 2004.

Reference Books

- 1. Ryder G.H- "Strength of Materials"- Macmillan India Ltd.- Third Edition- 2007
- 2. K. L. Kumar, 'Engineering Fluid Mechanics', S. Chand & Company Ltd., 2002.

Course Designers:

Course												
S.No	Name of the Faculty	Designation	Department/College	Mail ID								
1	A.Fizoor Rahman	AsstProf	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in								
2	M.Senthilkumar	Asst.Prof	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in								

17MECC03			E	NGIN MEC	NEER HAN	RING ICS		Ca	ategor	y I		T	P	Cro	edit	
Prea This and c	Preamble This course provides the basic knowledge about the behaviour of the bodies which are under static and dynamic conditions.												atic			
Prerequisite NIL																
Cou	Course Objective															
1	1 To explain the basic laws of mechanics and forces															
2	To r dime	elate nsio	e the n	basi	c cor	ncepts	and	appli	cation	n of 1	rigid t	odies	under	equilib	rium ir	n two
3	To se	olve	the	prob	lems	s rel	ated	to p	roper	ties of	f surfa	ces an	d soli	ls		
4	To so	olve	pro	blem	s invo	olvin	g Fric	tion a	and R	igid b	ody dy	mamic	s.			
5	To a	nalyz	ze the	e dyna	mics	ofpa	rticles	prob	lems.							
Cou	rse Oı	itcoi	mes:	On t	he su	ccessf	ul co	mplet	ion o	f the c	course	, stude	ents wi	ll be abl	e to	
CO1	. Id	entif uilib	y the riun	e engi 1	neerir	ng pro	blems	usin	g the	conce	pt of s	tatic		Under	rstand	
CO2	. So	lve	prob	lems o	of rig	id boo	dies u	nder e	quilit	orium	in two	dimen	sion	Apply	ý	
CO3	. De	etern vari	nine ous s	the Cosection	entroi ns.	d, mo	ment	of ine	ertia a	nd ma	ss moi	nent o	f inerti	a Apply	ý	
CO4	. So	olve	frictio	onal a	nd rig	id boo	ly app	olicati	on pro	oblem	s.			Apply	ý	
CO5	. eq	nalyz uilib	ze en orium	iginee 1	ring s	ysten	is usir	ng the	conce	ept of	dynarr	nic		Analy	/ze	
Map	ping	vith	Pro	gram	me O	utcor	nes ar	nd Pro	ogran	nme S	pecifi	c Outo	comes			
CO	PC	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	S		М	L	-	-	L	-	-	-	-	-	-	S	-	L
CO2	2 5		S	М	М	-	М	-	-	-	-	-	-	S	-	L
CO3	3 5		М	М	М	-	М	-	-	-	-	-	-	S	-	L
CO4	4 <u>s</u>		S	М	М	-	L	-	-	-	-	-	-	S	-	L
CO5	5 5		S	L	S	-	S	-	-	-	-	-	-	S	-	L
S- Sti	rong; N	I-Me	dium	; L-Lo	W											

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium -Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem -Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area - centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

Text	Books							
1	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II Dynamics, McGraw Hill International Edition, 1995.							
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.							
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.							
Refe	Reference Books							
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.							
2	Irving H. Shames and G.Krishna Mohana Rao, Engineering Mechanics - Statics & Dynamics, 4 th Edition, Prentice Hall of India Pvt. Ltd., 1997.							
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998							

Course Designers										
S.No	Faculty Name	Designation	Department/Name of the College	Email id						
1	N.Rajan	Assoc. Prof.	MECH/VMKVEC	rajan@vmkvec.edu.in						
2	A Elanthiraiyan	AP-II	MECH/AVIT	aelanthirayan@avit.ac.in						

17M	MECC08 DYNAMICS OF Category L T P Credit														
1/10	LCCU	0		MAC	HINE	S		(CC	2		1	0		3
Pream The st memb govern	nble udent v ers, ap nors an quisite	will ur plicati d gyrc : KIN	ndergo a on of b oscope o NEMAT	a seque alancii couple	ential ng ma s in re DF MA	under sses, t al tim	stand the di the app NES	ing of fferen licatio	the co t types ons.	oncept s of vib	of forc	ces act s and t	ing on di he effect	fferent	
Cours	Course Objective														
1	To demonstrate the concepts of forces acting on machines and its members.														
2	To learn about the application of balancing of masses.														
3	To determine the concepts of free vibrations.														
4	To Understand the concepts of forced vibrations.														
5	To apply the knowledge of Governors and Gyroscopic forces in real time applications.														
Cours	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	Illustrate the concepts of forces acting on machines and its members Understand														
CO2.	Ident	ify the	applic	ation o	of bala	ncing	of m	asses					Unde	rstand	
CO3.	Deter	rmine	the con	cepts (of free	vibra	tion						Appl	у	
CO4.	Com	pute a	ind gair	the a	pplica	tion o	f forc	ed vib	oration				Appl	у	
CO5.	To re time	late thapplic	e know ations	ledge	of Go	overno	ors ai	nd Gy	roscoj	pic for	ces wi	th real	Appl	у	
Марр	oing wi	th Pro	ogramr	ne Ou	tcome	es and	l Prog	gram	ne Sp	ecific	Outco	mes			
CO	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	S	S			-	-	-	-	-	-	-	-	М	L	-
CO2	S	S	L	L	-	-	-	-	-	-	-	-	М	L	-
CO3															
CO4	CO4 S S M L - - - - - M L -														
CO5	CO5 S S S S - - - - - M L -														
S- Stro	ng; M-I	Mediur	n; L-Lov	W	1	1	1	1	<u>ı l</u>			1	1	1	

FORCE ANALYSIS

Dynamic force analysis - Inertia force and Inertia torque - D'Alemberts principle - The principle of superposition - Dynamic Analysis in Reciprocating Engines – Gas Forces - Equivalent masses - Bearing loads - Crank shaft Torque - Turning moment diagrams - Fly wheels -Engine shaking Forces

BALANCING

Static and dynamic balancing - Balancing of rotating masses - Balancing a single cylinder Engine - Balancing Multi-cylinder Engines - Partial balancing in locomotive Engines - Balancing linkages - balancing machines.

FREE VIBRATIONS

Basic features of vibratory systems - idealized models - Basic elements and lumping of parameters - Degrees of freedom - Single degree of freedom - Free vibration - Equations of motion - natural frequency - Types of Damping - Damped vibration- critical speeds of simple shaft - Torsional vibration - Natural frequency of two and three rotor systems

FORCED VIBRATIONS

Response to periodic forcing – Harmonic Forcing - Forcing caused by unbalance - Support motion - Force transmissibility and amplitude transmissibility. - Vibration isolation.

MECHANISMS FOR CONTROL

Governors; Force analysis of Porter, Proel and spring controlled governors. Controlling force, stability, sensitiveness, effort and power of governors. Characteristics - Effect of friction. **Gyroscopic Forces**: Gyroscopic couple, Effect of Gyroscopic couple on vehicle; Applications of Gyroscopic forces. - Ships and airplanes

1	Rattan S.S, "Theory	y of Machines", '	Tata McGraw-Hill Pub	lishing Company Ltd. New Delhi.									
2	Khurmi R.S Gup	ta, "Theory of M	lachines". S.Chand & C	Со.,									
Refe	erence Books												
1	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors,												
2	Ghosh A and A.K.Mallick, "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., New Delhi.												
3	Shigley J.E and Vio	ckes J.J, "Theory	of Machines & Mecha	anism", McGraw Hill,									
Cou	se Designers												
S.No	Faculty Name	Designation	Department/ Name of the College	Email id									
1	S. Sangeetha Associate Mech / AVIT sangeethas@avit.ac.in												
2	Professor Mech / VMKVEC svenkatesan@vmkvec.edu.in												

15500005	DI		Category	L	Т	Р	Credit								
1/ECCU5	DIC	GITAL LOGIC CIRCUITS & DESIGN	CC	3	0	0	3								
PREAMBLE	PREAMBLE														
One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent															
of integrated circuits(ICs).Developments in the IC technology have made it possible to fabricate complex digital															
circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques															
suitable for a variety of digital system design applications.															
PREREQUISI	PREREQUISITE														
17EEES	17EEES03 - Basics of Electrical and Electronics Engineering														
COURSE OBJ	COURSE OBJECTIVES														
1 To under	stand the v	various number systems and their conversion	ons.												
2 To learn	the Boolea	an expressions, Boolean postulates and Kar	naugh map met	thod to a	reduc	e th	e variables.								
3 To impa	t the desig	gn knowledge of various combinational log	gic circuits and	sequent	ial ci	rcuit									
4 To under	stand the b	pasics of hardware descriptive language.													
5 To desig	the RTL	for various logic circuits.													
COURSE OUT	COMES														
On the successful	l completi	on of the course, students will be able to													
CO1. Explain the	basic prin	ciples of digital system, Logic gates and Boo	lean laws.			Unc	lerstand								
CO2. Simplify Boolean expression using K-Map techniques. Apply															
CO3. Examine v	CO3. Examine various Combinational circuits using logic gates. Apply														
CO4. Illustrate th	e operation	n of sequential circuits using Flip flops				А	nalyze								
CO5.Analyze various digital circuits using HDL programming. Analyze															

MAP	PING V	WITH	PROC	GRAM	ME O	UTCO	MES A	AND P	ROGR	AMME	SPECI	FIC OU	TCOM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
														O2	
CO1	S	М	L	-	-	-	-	-	-	-	-	L	S	-	-
CO2	S	М	М	L	L	-	-	-	-	-	-	L	S	-	-
CO3	S	S	М	М	М	-	-	-	-	-	-	L	S	М	-
CO4	S	S	М	М	М	-	-	-	-	-	-	L	S	М	-
CO5	S	S	М	М	М	-	-	-	-	-	L	L	S	М	М
S- Stre	ong. M	-Mediu	m· I_I	ow											

Basics of digital system:

About Digital system, Analog versus Digital, Advantages of processing information in digital form, Number System-Binary,Octal,Decimal & Hexadecimal Number Systems & its Conversion, Complement Arithmetic, Signed Binary Numbers, Binary Codes, Binary Storage And Registers.

Boolean Algebra, Logic Gates & Gate –Level Minimization:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable K-maps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL).

Combinational logic:

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder, Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers.

Synchronous Sequential Logic, Register & Counters:

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters.

Design At The Register Transfer Level:

Register Transfer Level Notation, Register Transfer Level In HDL, ASM, Sequential Binary Multiplier, Control Logic, HDL Description Of Binary Multiplier, Design With Multiplexers, Race Free Design, Latch Free Design.

TEXT BOOKS :

- 1. Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
- 2. John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall, 2005.

REFERENCE BOOKS:

- 1. Stephen D. Brown, and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design, 2nd Edition," McGraw Hill, June, 2007.
- 2. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.
- 3. Floyd T.L., "Digital Fundamentals ", Charles E. Merrill publishing Company, 1982.
- 4. Tokheim R.L., "Digital Electronics Principles and Applications ", Tata McGraw Hill, 1999.
- 5. Jain R.P., "Modern Digital Electronics ", Tata McGraw Hill, 1999

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

COURSE DESIGNERS

17MECC18 MANUFACTURING Category L T P Credit												dit			
1/101	EUUI	0	ENG	SINEE	RIN(J			CC		3	0	0		3
Pream This cuthe ma	Preamble This course provides deep knowledge about the various manufacturing processes, which are used in the manufacturing industry to produce mechanical components.														
Prereq	uisite :	NIL													
Course	Objec	ctive													
$\begin{bmatrix} 1 \\ t \end{bmatrix}$	To understand the manufacturing process of conventional and special casting process of foundry technology.														
2 7	To impart the knowledge of various types welding process in metal joining processes.														
3	To know the working principles of the various unconventional, conventional machining operations and also metal forming processes.														
4 7 r	To impart the basic knowledge and working principle of various forming and the moulding processes in plastics.														5
5 ⁷	processes in plastics. To impart the knowledge of various metal forming processes and manufacturing process of powder metallurgy.														
Course	powder metallurgy.Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	Explain the working principles of various metal casting processes and to understand identify the defects and interpret causes in the product of metal casting														
CO2.	Discu mach fabric	iss the ines/education/	e wor quipme assem	king p ents u bly of	orincij sed a produ	ples o and So acts.	of va elect	rious the	meta suita	al join ble jo	ing p ining	rocesses method	s and s for	under	stand
CO3.	Exam and u	nine th nconv	e worl ention	king pi al man	rincip ufactu	le of v uring p	vario	us con sses.	nventi	ional n	nachin	e tools,	work	Apply	1
CO4.	Illust and th	rate th	e types racteris	s of pla stics of	astics. f the f	, work orming	ing p g and	rincip l shap	ole of ing pr	variou	s mou s	lding pr	ocess	Apply	/
CO5.	Appl	y the c	oncept	s of va	rious	metal	form	ning a	nd po	wder n	netallu	rgy.		Apply	ý
Маррі	ng witl	h Prog	ramme	Outco	mes a	nd Pro	gram	me S	pecific	Outco	mes				
СО	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	-	-	-	-	-	-	-			-	М	-	-
CO2	S	Μ	-	-	-	-	-	-	-	-		-	М	-	-
CO3	S	М	L	_	-	-	-	-	_	-		Μ	М	-	-
CO4	S	L	L	-	-	-	-	-	-	-		М	М	-	-
CO5	S	L	L	-	-	-	-	-	-	-		М	Μ	-	-
S- Stro	ng; M	-Mediu	ım; L-I	Low		I.									

Introduction to Casting technology

Casting types, procedure to make sand mould, types of core making, moulding tools, machine moulding, special moulding processes– CO_2 moulding, shell moulding, investment moulding, permanent mould casting, pressure die casting, centrifugal casting, continuous casting and identify casting defects and remedies.

Welding

Classification of welding processes. Principles of Oxy-acetylene gas welding. A.C metal arc welding, Resistance welding, Submerged arc welding, tungsten inert gas welding, metal inert gas welding, plasma arc welding, thermit welding, electron beam welding, laser beam welding, and identify defects in welding process - Soldering and brazing.

Machining

General principles (with schematic diagrams only) of working and commonly performed operations in the following machines: Lathe, Shaper, Planner, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. General principles and applications of the following processes: Abrasive jet machining, Ultrasonic machining, Electric discharge machining, Electro chemical machining, Plasma arc machining and Electron beam machining and Laser beam machining.

Forming and shaping of plastics

Types of plastics - Characteristics of the forming and shaping processes – moulding of thermoplastics– working principles and typical applications of- Injection moulding – Plunger and screw machines– Blow moulding – rotational moulding – film blowing – extrusion- typical industrial applications – Thermoforming – processing of thermo sets– working principles and typical applications- Compression moulding – Transfer moulding – Bonding of thermoplastics– Fusion and solvent methods – Induction and ultrasonic methods.

Metal forming and powder metallurgy

Principles and applications of the following processes: Forging, Rolling, Extrusion, Wire drawing and Spinning, Powder metallurgy – Principle steps involved advantages, disadvantages and limitations of powder metallurgy.

1	S.K.HajraChoudhury	and A.K. Hajra	aChoudhury, 'Elements	of Work shop Technology', Vol									
1	– I & II Manu	facturing Proce	esses, Media Promoters a	nd Publishers Pvt. Ltd, 1986.									
2	Mikell P.Groover, 'F	undamental of	f Modern Manufacturii	ng', Wiley India Edition, Third									
2	Edition, Repri	int, 2012.											
2	P.C. Sharma, 'A Text Book of Production Technology (Manufacturing Processes)', S.												
3	Chand & Company Ltd., New Delhi, Seventh Reprint, 2012.												
Refere	ence Books												
1	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials",												
1	4/e, Pearson Education, Inc. 2007												
2	Jain, R.K. and S.C. G	upta. "Producti	ion Technology", 16th E	dition. Khanna Publishers, 2001									
-		apia, module											
3	E.Paul Degarmo, J.T.B	lack, and Ronald	l A. Konser, ' Materials an	d Processes in Manufacturing',									
v	5th Edition, Pro	entice Hall India	Ltd., 1997.										
Course	e Designers												
S.No	Faculty Name Designation Department/ Name of the College Email id												

1	S. ARUNKUMAR	Assistant Professor	MECH / VMKVEC	arunkumar@vmkvec.edu.in
2	M.SARAVANA KUMAR	Asst. Prof	MECH / AVIT	saravanakumar@avit.ac.in

17MECC09	DESIGN OF MACHINE	Category	L	Т	Р	Credit
111120000	ELEMENTS	CC	2	1	0	3

Preamble

Design is essentially a decision-making process. Design is to formulate a plan to satisfy a particular need and to create something with a physical reality. Every Mechanical Engineer should learn the pre-defined set of processes involved in conversion of raw material into a product. The Core course on Design of Machine Elements exposes the basic concepts and techniques involved in machine design. The Course includes the study about various types of stresses, theories of failure and design of shafts, couplings, fasteners, weld joints, springs ,bearings and flywheel. At the outset, the design and techniques involved during designing stages will be focused.

Prerequisite: Strength of Materials

Course Objective

CO1

Μ

Μ

Μ

L -

	0
1	To explain the various steps involved in the Design Process.
2	To categorize the various types of stresses and applications
3	To assess the principles involved in evaluating the shape and dimensions of a Component to satisfy functional and strength requirements.
4	To practice the use of standard procedures and data.
5	To design the various mechanical components for the given loading conditions.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Assess set of v	the di alues.	fferen	t type	es of s	tresse	es and	Theo	ries o	f failu	ire foi	giver:	n Ur	Understand				
CO2.	Design data and	shafts d proc	fined	Aŗ	ply													
CO3.	Design the welded joints and fasteners for given set of conditions and type of joints using Pre-defined values.													Apply				
CO4.	Design springs for given loading conditions as per the requirements.													Apply				
CO5.	Design requirer	beari ments	ngs ai	nd Fly	whee	els for	a giv	en sta	temer	nt as p	per the	9	Aţ	oply				
Mappir	ng with Programme Outcomes and Programme Specific Outcomes																	
СО	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PS0 1												PSO 2	PSO 3				
1	1										1		_	_				

-

- -

-

CO2	S	S	S	М	-	-	-	-	-	-	-	-	L	L	-
CO3	S	S	S	М	-	-	-	-	-	-	-	-	L	L	-
CO4	S	S	S	М	-	-	-	-	-	-	-	-	L	L	-
CO5	S	S	S	М	-	-	-	-	-	-	-	-	L	L	-
S- Strong; M-Medium; L-Low															

Syllabus

STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS

Introduction to the design process - factor influencing machine design- Direct- Bending and torsional stress equations -Calculation of principal stresses for various load combinations-Factor of safety - theories of failure – stress concentration – design for variable loading – Soderberg- Goodman and Gerber relations

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength- rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF FASTENERS AND WELDED JOINTS

Threaded fasteners - Design of bolted joints including eccentric loading – Design of welded Joints for pressure vessels and structures - Theory of bolted joints.

DESIGN OF SPRINGS

Design of helical- leaf- disc and torsional springs under constant loads and varying loads – Concentric torsion springs

DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types– Design of journal bearings calculation of bearing dimensions – Design of flywheels involving stresses in rim and arm.

1	Design of Machine Elements-V.B.Bhandari								
2	Mechaniacl Engineering Design: Joseph E Shigley and Charles R. Mischke								
Refere	Reference Books								
1	Machine Design :Robert L.Norton, Pearson Education								

2	Design Data Book, compiled by PSG College of Technology										
3	Fundamentals of Machine component Design–Robert C.Juvinall, Wiley India Pvt.Ltd,										
4	Engineering Design, G.E. Dieter.										
Course	e Designers										
S.No	Faculty Name	Designation	Department / College	Email id							
1	J. SENTHIL Associate Mech / AVIT jsenthil@avit.ac.in Professor										
2	J SATHEES BABU	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in							

17EECC16	POWER ELECTRONICS AND DRIVES	Category	L	Т	Р	Credit
		CC	3	0	0	3

Power electronics deals with the processing and control of 'raw' electrical power from an electrical source such as an AC mains supply, a battery bank, a photovoltaic array, or a wind turbine into a form and quality suitable for a particular electrical load. It is an enabling technology with a very wide range of applications, such as a cell phone charger, a personal computer, a microwave oven, an MRI system, a hybrid electric car, or even the electrical grid. As can be noted, the power levels handled can vary from a few watts to several hundreds of megawatts. In this course, we will study the basic principles behind the power electronic circuits used in most such power processing applications. These circuits include power converters for DC to DC, DC to AC and AC to DC applications.

PREREQUISITE-NIL

COUR	SE OBJECTIVES								
1	To get an overview of different types of power semiconductor devices and their switching characteris	tics.							
2	To understand the operation, characteristics and performance parameters of controlled rectifiers.								
3	To study the operation, switching techniques and basics topologies of DC-DC switching regulators.								
4	To learn the different modulation techniques inverters and to understand harmonic reduction methods								
5	To study the operation of AC voltage controller.								
COUR	SE OUTCOMES								
On th	e successful completion of the course, students will be able to								
CO1: 7	The basic semiconductor physics to the properties of real power semiconductor devices and	Remember							
differer	differentiate from low power devices.								
CO2: T	The concepts of operation of AC-DC converters in steady state and transient state of both continuous	Understand							
and dise	continuous modes.								
CO3: C	lassify and design choppers for simple electrical application	Apply							
CO4: Io	dentify the proper gating sequence and control circuit in operating the single phase and three phase	Analyze							
inverter	circuits.								
CO5: A	Analyze the performance parameter, various techniques for analysis and design of AC voltage	Analyze							
control	er and also list the various control schemes in cycloconverter.								
CO6: D	CO6: Describe the concepts of electric machines. Understand								
CO7: Iı	nplement the power electronics concepts to AC & DC drives to made the effective control	Analyze							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	Μ	L	L	-	L	L	L	L	L	L	S	-
CO2	S	S	Μ	Μ	L	-	М	-	-	-	-	-	L	S	-
CO3	S	S		Μ	L	М	M-	-	-	-	-	-	L	S	-
CO4	S	S	S	Μ	S	-	М	-	-	-	-	-	L	М	-
CO5	Μ	S	-	Μ	S	-	М	-	-	-	-	-	М	М	-
CO6	Μ	S	Μ	S	-	-	М	-	-	-	-	-	Μ	Μ	-

CO7	Μ	Μ	Μ	S	Μ	М	-	-	-	-	-	-	М	М	-
S- Stro	ng; M-N	Aedium	; L-Lov	W-					L						
POWE	R SEM	II-CON	DUCT	OR D	EVICE	S									
Overvie	Overview of switching devices – Driver and snubber circuit of SCR TRIAC, GTO, IGBT, MOSFET – Computer simulation														
of PE c	of PE circuits.														
RECT	IFIERS	5 & CH	OPPE	RS											
Introdu	ction-2	pulse /	3 pulse	e and 6	pulse c	onverte	rs – Du	al conv	erters.	Basic Pri	inciples of	of Chopp	ers - Stej	odown ar	nd stepup
choppe	r – Tim	e ratio c	ontrol	and cur	rent lir	nit cont	rol – Bı	uck, Bo	ost, Bu	ck-Boost	converte	ers.			
INVEF	RTERS	& AC ·	- AC C	ONVE	RTER	S									
Single	phase ai	nd three	phase	[120° 8	2 180° 1	mode] i	nverters	s - PW	M techr	niques – S	Sinusoida	al PWM,	Modifie	1 sinusoi	dal
PWM a	and mul	tiple PW	VM.												
Single	phase A	C volta	ge cont	trollers	– Mult	istage s	equence	e contro	ol – sing	gle phase	and thre	e phase c	yclocony	verter.	
ELEC	ΓRICA	L DRIV	VES												
Туре	of El	ectrical	Driv	ves –	Sele	ction	& fac	ctors	influen	cing th	e selec	ction –	heatin	g and	cooling
curves	-]	loading	cone	dition	and	classe	s of	duty	-	determin	ation	of pov	ver rat	ing –	simple
problem	ns.						-								
SOLI	DSTA	TE DRI	IVES (QUAL	ITATI	VETR	EATM	IENT (DNLY)			1	1		. 1 . 6
Advant	ages o	of soli	d sta	te dri	ves –	- D.C.	moto	or coi	itrol i	ising re	ectifiers	and c	hoppers	- col	ntrol of
inductio	on me	otor b	oy v,	, V/I	and	slip	power	r reco	overy	scheme	using	inverte	ers and	A.C.	power
regulate	JIS.														
												Total Ho	ours	: 45	
TEXT	BOOK	S:													
1. Rash Indi	id M.H a. 3rd E	., "Powe dition. I	er Elect New D	tronics elhi, 20	Circuit 04.	s, Devic	es and	Applica	ations",	Prentice	Hall				
2. 0	Ъ.К.	Dubey	"Fu	Indamer	ntal	Electric	cal I	Drives"	sec	ond e	dition	2002,	Narosa	ı Pub	lications,
Seco	ond edit	ion, 200)2.									,			,
REFEI	RENCE	ES:													
1. Cyril	.W.Lan	der, "Po	ower E	lectroni	cs", M	cGraw l	Hill Inte	ernation	al, Thi	d Edition	n, 1993.				
2. P.S.I	Bimbra	"Power	Electro	onics", l	Khanna	Publis	hers, th	ird Edit	ion 200	3.					
3. Phili	p T.Kre	in, "Ele	ments	of Powe	er Elect	tronics"	Oxford	l Unive	rsity Pr	ess, 2004	Edition.				
4. N.K.	De.,P.K	L.Sen "E	Electric	Drives	", Pren	tice Hal	l, First	edition	1999.						
5. Pilla	i, S.K.,	" A Firs	st cours	e on El	ectrical	l Drives	", Wile	y Easte	rn Ltd.,	New De	lhi, 1982	2			
COUR	SE DE	SIGNE	RS												
S.No.	N	lame of	the Fa	culty		Des	ignatio	n	Ι	Departme	ent		Ma	il ID	
1	Mr.A.	Balamu	rugan		A	ssistant	Profess	sor	EEE/	VMKVE	С	balamu	rugan@v	mkvec.e	du.in
2	Mr.N.	P.Gopin	nath		A	ssistant	Profess	sor	EEE/	AVIT		Gopina	thnp@av	it.ac.in	
					(fr_II)									

17EC	CC10	L	INEAI	R INTI	EGRA	TED (CIRCU	JITS	Ca	tegory	L	Т	Р		Cred	it
										CC	3	0	0		3	
PREA	MBL	E														
Linear	Integr	ated ci	rcuits e	enables	the stu	udents	to hav	e an in	sight k	nowledge	on fun	damen	tals of	f var	ious inte	egrated
circuits	s. The	designe	ed cour	se mak	tes the	studen	ts to w	ork on	the var	rious appl	ications	of the	Integ	rated	d Circuit	s. This
subject	t helps	the st	udents	to des	ign, m	odel ar	nd dev	elop ar	nplifie	r circuits,	compa	rators,	regula	ators	s, filters,	timer,
D/A ar	D/A and A/D converters and PLL.															
PRER	EQUI	SITE														
	17EC	CC01	- Semi	conduc	ctor De	vices										
COUR	RSE O	BJEC	ΓIVES													
1	To U	ndersta	and the	basics	of Inte	grated	Circui	ts and	its fabr	ication.						
2	To ge	t famil	liarized	l with c	operatio	onal an	nplifier	s and i	ts Cha	racteristic	s.					
3	To Co	onstruc	ct vario	us circ	uits usi	ing ope	erationa	al ampl	lifier ar	nd analyze	e its per	forman	ce.			
4	To de	esign ai	nd the	workin	g of wa	aveforr	n gene	rators,	regulat	tors, filter	s and ti	ners ci	rcuits	•		
5	To U	ndersta	and the	basic c	concept	ts of PI	LL.									
COUR	RSE O	UTCO	MES													
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)						
CO1. I	Describ	e the C	Concep	ts of Fa	abricat	ion of a	active a	and pas	sive co	omponent	S	Unders	stand			
CO2. I	nterpre	et the C	Dperation	onal Ai	mplifie	r with	its cha	racteris	stics.			Apply				
CO3. I	Design	and an	alyze t	he vari	ious ap	plicatio	ons of o	Operati	ional A	mplifier.		Analyz	ze			
CO4. I	Design	and an	alyze v	vave g	enerato	ors and	regula	tors.				Analyz	ze			
<u>CO5.1</u>	Jesigni	ing and	analy:	$\frac{z_{1}}{c}$	ters an	$\frac{d T_{1}}{d}$	er circu	uts.				Analyz	ze			
CO6. A	Analyz	e the v	arious	runctio	nal blo	CKS OI	PLL.					Analyz	ze			
MAPF	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMME	SPECI	FIC C	UTC	OM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PS	01	PSO2	PSO3
CO1	S	Μ	L	-	-	-	-	-	-	-	-	Μ	.	5	М	-
CO2	S	Μ	Μ	Μ	Μ	-	-	-	-	-	-	M		5	М	-
CO3	S	S	Μ	М	М	-	-	-	-	-	-	Μ		5	М	-
CO4	S	S	Μ	Μ	Μ	-	-	-	-	-	-	Μ		5	М	-
CO5	CO5 S S M M M M S M -									-						
CO6	S	S	Μ	Μ	Μ	-	-	-	-	-	-	M		5	Μ	-
S- Stro	ong; M-	Mediu	ım; L-I	LOW												

INTEGRATED CIRCUIT FABRICATION AND CHARACTERISTICS

Integrated Circuit Technology –Basic Monolithic Integrated Circuits-Epitaxial Growth-Masking and Etching-Diffusion of Impurities-Transistors for monolithic circuits-Monolithic Diodes-Integrated Resistors-Integrated Capacitors and Inductors-Monolithic –Circuit Layout-Additional Isolation Methods-Large Scale and Medium Scale Integration.

OPERATIONAL AMPLIFIER

Basic operational Amplifier – Ideal Operational Amplifier – Operational Amplifier Internal Circuits – Examples of IC Op Amps – FET Operational Amplifiers – DC Characteristics – AC Characteristics – Analysis of Data Sheets of an Op Amp.

OPERATIONAL AMPLIFIER APPLICATIONS

Basic Op Amp Applications – Instrumentation Amplifiers – AC Amplifiers – V to I and I to V Converters – Op Amp Circuits Using Diodes – Sample and Hold Circuits – Log/Antilog Amplifiers – Adder/ Sub tractor – Multiplier and Divider – Differentiator and Integrator – Operational Transconductance Amplifier-Pspice Simulation Tools.

COMPARATORS, REGULATORS, FILTERS AND TIMERS

Comparators – Square, Triangular and Sawtooth wave Generators, Series Op Amp Regulators – IC Voltage Regulators – 723 General Purpose Regulators – RC Active Filters – Active Filters using OTA's, Timer – Description of Functional Diagram – Monostable and Astable Operation – Schmitt Trigger

PLL, D/A AND A/D CONVERTERS

PLL – Basic Principles – Phase Detectors/ Comparators – Voltage Controlled Oscillator – Low Pass Filter – Monolithic PLL – PLL Applications – Basic DAC Techniques – A–D Converters – DAC/ ADC Specifications.

TEXT BOOKS:

1. D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuits", New Age International Publishers, 5th Edition 2018.

2. Jacob Millman, Chirstos C.Halkias, "Integrated Electronics", Tata Mc-GRAW Hill, Edition, 3rd Edition, 2010

REFERENCE BOOKS:

- 1. Robert F Coughlin, Fredrick F.Driscoll," Operational Amplifiers and Linerar Integrated Circuits", Phi Learning,6th Edition,2009.
- 2. Sergio Franco, "DesignwithOperational Amplifiers and Analog Integrated Circuits", Tata Mc-GRAW Hill ,4th Edition, 2016.

COURSE DESIGNERS

COUL				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

SENSORS AND Categor	y L		Т	P		Cre	dit			
17ECCC23 ELECTRONIC PC MFASUREMENTS PC	3		0	0		3				
Preamble										
This course provides comprehensive idea about working principle, operation of various										
types of sensors are used for physical quantity	measu	rement	t & Instru	imen	tation	, as w	ell			
systems.										
Prorequisite										
Nil										
Course Objective										
1 To understand fundamentals of measure	ement s	system	s.							
2 To study principles, working, mathematic limitations of various sensors	cal rela	ation c	haracteri	stics,	adva	ntages	s and			
3 To study about various types of Electroni	ic meas	sureme	ents							
4 To understand basics of Digital Instrument	nts									
5 To impart knowledge on Data Acquisition	n & In	terface	e Systems	3						
Course Outcomes: On the successful comple	tion o	f the c	ourse, st	uden	nts wil	l be a	ble			
to	t evete	ame or	rors of			ndere	tand			
CO1. measurement.	ii syste	lins, ci	1013 01			nuers	tanu			
CO2. Understand the various types of sensors principles.	s and th	heir wo	orking		U	nders	tand			
CO3. Deserve the various types of electronic working principles.	equipi	ment's	and their		U	nders	tand			
CO4. Understand the working principles of visit instruments.	arious	types	digital			App	ly			
CO5. Understand the function of Data Acquis Interface Standards.	sition s	system	and vari	ous		App	ly			
Mapping with Programme Outcomes and Pr	rograr	nme S	pecific C	outco	omes					
CO PO PO PO PO PO PO	PO I	PO P	O PO	РО	PS	PS	PS			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 9	9 1	0 11	12	01	02	03			
COIS-L-M			-	Μ	М	_	М			
CO2 S - M - M	L		-	М	L	М	-			
CO3 S - M - M L			-	М	-	-	-			
CO4 S - M - S			-	М	L	-	Μ			
CO5 S - M - M			-	Μ	-	L				
S- Strong; M-Medium; L-Low										

Syllabus

BASIC MEASUREMENT AND ELECTRONIC MEASUREMENT CONCEPTS

Basic block diagram stages of generalized measurement system, Static and dynamic characteristics, units and standards of measurements, error analysis, Zero order instrument, First order instrument, True RMS meters - Bridge measurements-Maxwell, Hay, Schering, Anderson bridge, cathode ray oscilloscope, Q meters- Vector meters

SENSORS AND PRINCIPLES

Resistive sensors, Potentiometer and Strain gauges, Inductive sensors- Self-inductance type, Mutual inductance type, LVDT, Capacitive sensors, Piezo electric sensors, Thermocouples, Thermistors, Radiation Pyrometry, Fiber optic temperature sensor, Photo electric sensors, Pressure and Flow sensors

ELECTRONIC MEASUREMENTS

Digital method of measuring frequency, period, phase difference, pulse width, time interval, total count, Function generator, Cathode Ray Oscilloscope, Digital storage oscilloscope- x-y chart, strip chart recorders, magnetic tape recorders, Logic Analyzers, Data Loggers Demonstration of CRO and DSO.

DIGITAL INSTRUMENTS

Analog to digital converters, Digital to analog converters, digital voltmeter, multimeters, frequency counters- measurement of frequency and time interval- extension of frequency range- measurement errors.

DATA ACQUISITION, INTERFACE SYSTEMS AND FIBER OPTIC MEASUREMENTS

Elements of data acquisition system, interfacing of transducers, computer-controlled instrumentation, RS232C, RS422, RS 485 buses, British standard interface (BS 4421), CAN bus, I²C Bus, Modbus, Ethernet, fiber optic measurement for power and system loss, optical time domain reflectometer

I ext I	DOOKS
1	Albert D.Helfrick and William D.Cooper- Modern Electronic Instrumentation and Measurement Techniques, Prentice Hall of India, 2003.
2	Rangam C.S.Sarma, G.R.Mani, V.S.V "instrumentation-device, s and systems", Tata McGraw Hill publishing company LTD.1997
3	SAWHNEY, A.K " A course in Electrical and Electronic measurements and instrumentation", Dhanpat Rai & sons, 1995
Refer	ence Books
1	Joseph J. Carr, Elements of Electronics Instrumentation and Measurement, Pearson education, 2003
2	Doeblin E.O Measurements systems, Tata McGraw Hill 1995
3	D.A. Bell, Electronic Instrumentation and Measurements, Prentice Hall of India,2002
4	Clyde F.Coombs, Electronic Instrument Handbook, McGraw Hill Professional, third Edition, 1999.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Mr.P. Subramanian	Associate Professor	ECE/ AVIT	subramanian @ avit.ac.in							
2	G. Murali	Assistant Professor	ECE/VMKVEC	muralig@vmkvec.edu.in							

17ECCC07	MICROCONTROLLERS &	Category	L	Т	Р	Credit
1/10000/	ITS APPLICATIONS	CC	3	0	0	3

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE - Nil

COUR	SE OB	JECTI	VES												
1	To lea	arn the c	concepts	s of mic	croproc	essors a	and kno	wledge	of inte	erfacing	devices.				
2	To stu	udy the	Archite	cture of	8051 r	nicroco	ontrolle	r							
3	To develop skill in simple program writing of microcontroller														
4	To study the interfacing and applications of microcontroller														
5	To study the advanced microcontrollers.														
COUR	COURSE OUTCOMES														
On the	success	ful com	pletion	of the o	course,	student	s will b	be able	to						
CO1. E	Explain t	the conc	cept of r	nicropr	ocessoi	and in	terfaciı	ng devid	ces.				Und	erstand	
CO2. E	CO2. Explain the architecture and function of 8051 microcontroller Apply														
CO3. D	CO3. Design and implement programs on 8051 Microcontroller Analyze														
CO4. D	Design a	nd impl	lement a	applicat	ions us	ing 805	51 Micr	ocontro	oller				Ana	lyze	
CO5. II	llustrate	various	s applica	ations u	sing ad	lvanced	l Micro	control	lers.				Ana	lyze	
MAPP	ING W	ITH P	ROGRA	AMME	COUTO	COME	S AND	PRO(GRAM	ME SPE	ECIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	S	S
CO2	S	S	S	-	М	-	-	-	-	-	-	М	S	М	М
CO3	S	М	М	-	М	М	-	-	-	-	-	Μ	S	S	М
CO4	CO4 S S M - M M M S S S														
CO5	S	М	S	-	М	Μ	-	-	-	-	-	Μ	S	Μ	Μ
S- Stro	ng; M-N	Medium	; L-Lov	V											

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes – Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simple programs- Programmable Peripheral Interface 8255 – Programmable Communication Interface 8251 USART – Programmable Interrupt Controller 8259A – Direct Memory Access Controller 8257- Programmable Interval Timer 8253 – Keyboard/Display Controller 8279.

INTEL 8051 MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- Serial Communication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing-DC Motor Interfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, I^2C – SPI – Watchdog timer – ARM7 (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS:

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2. Frank D. Petruzella. "Programmable Logic Controllers", McGraw-Hill Book, Company, 1989

REFERENCE BOOKS:

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

COUR	SE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mr.S.Selvam	Assistant Professor	ECE	selvam@avit.ac.in
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
3	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

17EECC08	CONTROL SYSTEMS	Category	L	Т	Р	Credit
17ELCC00	CONTROL STOTEMS	CC	3	0	0	3

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

17EEES03 - Basics of Electrical and Electronics Engineering

COURS	E OBJECTIVES											
1	Understand the feedback and feed-forward control; apply block diagram systems.	m representations of control										
2	To find time response of given control system model, various controller MATLAB.	s design and simulation using										
3	To understand the frequency domain analysis, use of frequency response closed loop control systems.	e methods for open loop and										
4	To analyze the stability of closed and open loop systems using various methods and to design compensators,											
5	5 To develop and analyze the state space models.											
COURS	E OUTCOMES											
On the su	accessful completion of the course, students will be able to											
CO1	Find Transfer function of systems.	Understand										
CO2	Find the time response of given control system model and to design a controller.	Create										
CO3	Find the frequency response of control system model using frequency response plots.	Analyze										
CO4	Analyze the stability of the control system and design the suitable compensators.	Create										
CO5	Apply state space techniques to model control systems.	Evaluate										

MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	М	-	-	-	-	-	Μ	М	S	М	-
CO2	S	Μ	-	Μ	S	-	-	Μ	-	-	-	М	S	М	S
CO3	S	Μ	-	Μ	S	-	-	-	-	-	-	Μ	S	Μ	-
CO4	S	Μ	-	Μ	S	-	М	-	-	-	Μ	М	S	Μ	S
CO5	S	Μ	-	Μ	S	L	L	_	Μ	-	Μ	М	S	М	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – Open and closed loop systems – Mechanical Translational and Rotational Systems, Electrical analogy – Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, ,Frequency domain specifications, Correlation between time and frequency responses, Minimum phase, Non minimum phase and all pass transfer functions, Bode Plot, Polar Plot, Constant M and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Construction of root loci, Nyquist stability criterion. Lag, Lead and Lag-Lead networks, Compensator design using Bode plots & Root Locus.

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time systems. Synchros – AC servomotors- DC Servo motors - Stepper motors- Tacho generator.

TEXT BOOKS

K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
 I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
 C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
 R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB Reference).

5. M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008

6. Nise N.S, "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

1.Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.

- 2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.
- 3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/
- 4. Control Systems N. K. Sinha, New Age International (P) Limited Publishers.

5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

COURS	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-mail id										
1	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in										
2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in										

17MTCC01	PROGRAMMABLE LOGIC	Category	L	Т	Р	Credit
	CONTROLLERS (THEORY & PRACTICE)	CC	2	0	2	3

Programmable Logic Controllers is the applied science of automatic control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications) Mode of operation and programming of a Programmable Logic Controller (PLC), Characteristics of a PLC (synchronous, asynchronous), Analysis of the process schematic Statement of the interlocking functions and the safety requirements Creating of a control system function chart. Selection of the necessary hardware units, Programming, Simulation, Start-up procedure, testing.

PRER	EQUI	SITE -													
COURSE OBJECTIVES															
1 To Understand the PLC used in automatic control systems I / O and indicate their advantages and limitations.															
2	2 To apply the control programming the devices and modes of operation.														
3	3 To apply a Electromagnetic Control Relays, Manually Operated Switches.														
4	4 To design Timer and counter circuit.														
5 To apply and develop a programmable control device for point-to-point applications															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Describe the working of the Programmable Logic Controllers operations Understand															
CO2. Apply the programming in ladder diagram design Apply															
CO3. Develop the design in timer and counter circuits. Apply													ply		
CO4.	Genera	te a Da	ta Tran	sfer O	peration	ns and D	ata Co	mpare	Instruct	tions				Ana	lyze
CO5. I P	Develoj alletizi	p a PLC ng, sort	C progr	am for d inspe	point- ction o	to-point f work-j	applica parts.	tions s	uch as	pick and	place,			An	alyze
MAPI	PING V	WITH	PROG	RAM	ME OU	UTCON	IES AN	ND PR	OGRA	MME S	PECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	L	L	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	L	Μ	-	L	-	-	-	-	-	-	-	S	-	-
CO3	S	L	Μ	-	-	Μ	-	-	-	-	-	Μ	S	Μ	-
CO4	S	S	L	-	Μ	-	-	-	-	-	-	Μ	S	Μ	-
CO5	S	S	S	Μ	S	Μ	S	L	S	S	Μ	Μ	S	Μ	М
S- Stro	ong; M-	-Mediu	m; L-L	.OW											
SYLL	ABUS														

INTRODUCTION TO PLC:

Introduction, Parts of a PLC, Principles of Operation, Modifying the Operation, PLCs versus Computers, PLC Size and Application. The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O Specifications, The Central Processing Unit (CPU), Memory Design, Memory Types, Programming Terminal Devices.

PLC PROGRAMMING LANGUAGES :

Processor Memory Organization, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Entering the Ladder Diagram, Modes of Operation. Electromagnetic Control Relays, Contactors, Motor Starters, Manually Operated Switches, Mechanically Operated Switches, Sensors, Output Control Devices, Seal-In Circuits, Latching Relays, Converting Relay Schematics into PLC Ladder Programs, Writing a Ladder Logic Program Directly from a Narrative Description.

TIMERS AND COUNTERS :

Mechanical Timing Relays, Timer Instructions, On-Delay Timer Instruction, Off-Delay Timer Instruction, Retentive Timer, Cascading Timers. Counter Instructions, Up-Counter, Down-Counter, Cascading Counters, Incremental Encoder-Counter Applications, Combining Counter and Timer Functions.

PLC INSTRUCTIONS :

Data Manipulation, Data Transfer Operations, Data Compare Instructions, Data Manipulation Programs, Numerical Data I/O Interfaces, Closed-Loop Control. Math Instructions, Addition Instruction, Subtraction Instruction, Multiplication Instruction, Division Instruction, Other Word-Level Math Instructions, File Arithmetic Operations.

PLC AUTOMATION :

Types of Processes, Structure of Control Systems, On/Off Control, PID Control, Motion Control, Data Communications, Supervisory Control and Data Acquisition (SCADA).

PLC PRACTICE :

Hydrometer rotation with Timer & speed control, ON / OFF Control using PID, Simulation of basic PLC programs using PLC simulator.

TEXTBOOKS

1. Frank D.Petruzella,"Programmable Logic Controllers", McGraw-Hill Companies, Third edition, March2004

2. Charles H. Roth, Jr "Fundamentals of Logic Design ", Fourth Edition, Jaico Publishing house, 1999.

COURSE DESIGNERS

S.No	Name of the	Designation	Department	Email ID
1	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in
2	Mr.G.Murali	Assistant Professor	ECE	Muralig@vmkvec.edu.in
3	Dr. L. K. Hema	Professor & Head	ECE	hemalk@avit.ac.in

17ECEC20	ROBOTICS AND AUTOMATION	Category	L	Т	Р	Credit
THEELC20	RODOTICS AND AUTOMATION	EC(PS)	3	0	0	3

Robotics is the applied science of motion control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications). Robotics, sensors, actuators and controller technologies are continuously improving and evolving synergistically. In the 20th century, engineers have mastered almost all forms of motion control and have proven that robots and machines can perform almost any job that is considered too heavy, too tiring, too boring or too dangerous and harmful for human beings. This course supports the students to design and develop multi-DOF manipulator and wheeled mobile robot.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To Un	To Understand the actuators used in robotic manipulators and indicate their advantages and limitations.													
2	To app robot	ply the f	forward	l kinerr	natic me	odel of	multi-o	degree	of free	dom to c	levelop	a robot a	arm and w	heeled	
3	To app	oly a sta	tic for	ce and o	lynami	c mode	el of tw	o degre	ees of f	reedom	to devel	op robot	arm		
4	To apply a step by step procedure for the generation a cubic polynomial trajectory for a joint with specified kinematic constraints														
5	To apply and develop a program for point-to-point applications														
COU	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	CO1. Describe the working of the subsystems of robotic manipulator and wheeled mobile robot Understand														
CO2.]	CO2. Demonstrate the forward kinematic model of multi-degree of freedom (DOF) manipulator and inverse kinematic model of two and three degrees of freedom planar robot arm and wheeled robot														
CO3. 1	CO3. Exhibit the static force and dynamic model of two degrees of freedom planar robot arm Apply														
CO4. (Organiz kinema	e a traje tic cons	ectory i straints	n joint of mul	space u ti-degr	using p ree of fi	olynon eedom	nial and (DOF)	l trigon) manip	ometric oulator	function	is with g	iven	Ana	lyze
CO5. l p	Experin alletizin	nent a o 1g, sorti	ffline rong and	obot pr inspec	ogram tion of	for poi work-p	nt-to-p parts	oint ap	plicatio	ons such	as pick	and plac	e,	Ana	lyze
MAPI	PING V	VITH F	PROGE	RAMM	IE OU	TCOM	IES AN	ND PR	OGRA	MME S	SPECIF	IC OUI	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	М	_	-	М	S	М	-
CO2	S	М	М	-	-	-	-	-	М	-	-	М	S	М	-
CO3	S	М	М	-	-	-	-	-	М	_	-	М	S	М	-
CO4	S	М	М	-	М	-	-	-	М	-	-	М	S	М	-
CO5	S	М	М	-	М	-	-	-	Μ	-	-	М	S	М	-
S- Stro	ong; M-	Mediun	n; L-Lo	OW											

Introduction to Robotics. Mechanical structure: Robot Configuration - Robot Anatomy, Sub-systems/ Elements of Industrial Robot - Performance characteristics of industrial Robots. Mobile robot locomotion: Introduction, key issues for locomotion, wheeled locomotion-wheel design, geometry, stability, manoeuvrability and controllability. Applications - Progressive advancement in Robots – Point to point and continuous motion applications - Mobile manipulators and its applications.

Kinematic model: Forward Kinematics for two DOF manipulator – Algebraic method, Mechanical structure and notations, Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation) Description of links and joints, Denavit-Hartenberg (DH) notation, Forward Kinematics for multi-Degrees of Freedom (DOF) manipulator. Inverse kinematics of two DOF planar manipulator - Manipulator workspace. Mobile Robot kinematics: kinematic model and constraints, Mobile robot workspace-motion control.

Static model: Differential relationship - Velocity analysis – Jacobian matrix – Determination of forces and equivalent torques for joints of two link planar robot arm. Dynamic model: Euler –Lagrangian formulation - Forward and inverse dynamic model for two DOF planar manipulator.

Trajectory planning: Definitions and planning tasks, Joint space techniques – Motion profiles – Cubic polynomial, Linear Segmented Parabolic Blends and cycloidal motion - Cartesian space techniques. Navigation: Graph search and potential field path planning - navigation architecture - offline and online planning.

Robot Programming- Manual Programming – Teach Pendant, Offline programming - VAL programming, Online Programming. Case Studies.

TEXTBOOKS

- 1. S.K.Saha, "Introduction to Robotics", Second Edition, McGraw Hill Education (India) Private Limited, 2014.
- Roland Siegwart and Illah R.Nourbakhsh, "Introduction to Autonomous Mobile Robots", Prentice Hall of India (P) Ltd., 2005.

REFERENCE BOOKS

- 1. 1. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotics: Modelling, Planning and Control", First Edition, Springer-Verlag London, 2009
- 2. K.S. Fu, R.C Gonzalez and C.S. Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Editions, 2008.
- 3. John J.Craig, "Introduction to Robotics, Mechanics and Control", Third Edition, Pearson Education, 2005.
- 4. Mark W.Spong, M.Vidyasagar, "Robot Dynamics and Control", Wiley India, 2009.
- George A. Bekey, "Autonomous Robots From Biological Inspiration to Implementation and Control", MIT Press, 2005.
- 6. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementation", MIT Press, 2005.
- 7. Mikell P. Groover, Mitchell Weiss, Roger N.Nagel and Nicholas G. Odrey, "Industrial Robotics Technology, Programming and Applications" Tata McGraw-Hill, 2008.
- 8. Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 9. P.A. Janakiraman, "Robotics and Image Processing", Tata McGraw-Hill, 1995.
| COU | COURSE DESIGNERS | | | | | | | | | | | | |
|------|---------------------|-------------|------------|-----------------------------|--|--|--|--|--|--|--|--|--|
| S.No | Name of the Faculty | Designation | Department | Mail ID | | | | | | | | | |
| 1 | Dr.T.Muthumanickam | Professor | ECE | muthumanickam@vmkvec.edu.in | | | | | | | | | |
| 2 | Dr.L.K.Hema | Professor | ECE | hemalk@avit.ac.in | | | | | | | | | |

COMPUTER INTEGRATEDCategoryLTPCredit										it					
17MI	ECC12	Μ	ANUF	TACT	URIN	G	C	С	3		0	0		3	
Pream The st Design	n ble sudents n, manu	compl factur	eting t ing &	his co Busin	ourse a ess asp	re ex pects.	pected	l to ur	ndersta	and th	e natu	re and	role	of comp	uters in
Prere	quisite	Nil													
Cours	se Obje	ctive													
1	To understand the concepts involved in CAD, CAM and CIM														
2	To apply geometric modelling techniques and various graphics standards in CAD														
3	To apply Modelling Techniques & graphic standard while designing.														
4	To make use of GT and CAPP concepts in processing components.														
5	To identify the components of FMS and SFC														
Cours	ourse Outcomes: On the successful completion of the course, students will be able to														
CO1	CO1 Discuss the basic concepts of Computer Aided Design and Manufacturing Understand														
CO2	App	y the c	concep	t of M	Iodelir	ng tec	chniqu	es for	desig	ning t	he con	nponen	ts	Apply	
CO3	Deve diffe	elop (rent op	CNC peratio	progra ns.	ams f	or v	arious	mec	hanic	al co	ompone	ents w	vith	Apply	
CO4	App]	y the ning te	conce chniqu	pts of les in	f Grou Manuf	ip teo factui	chnolo ing	gy an	d Co	mpute	er aide	d proc	ess	Apply	
CO5	Ider Flex	tify th	e funct anufac	tions of turing	of varie Syste	ous c ems.	ompoi	nents (of Sho	op Flo	or Con	trol an	d	Apply	
Марр	ing wit	h Pro	gramn	ne Ou	tcome	es an	d Prog	gramn	ne Sp	ecific	Outco	omes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	-	-	L	-	-	-	-	-	-	-	L	L	
CO2	S	S	S	S	S	-	-	-	М	М	М	-	L	L	
CO3	S	S	L	S	S	-	-	-	М	М	-	-	L	L	
CO4	М	L	М	М	S	-	-	-	М	-	М	-	L	L	
CO5	М	L	S	L	-	-	-	-	-	-	-	-	L	L	
S- Stro	S- Strong; M-Medium; L-Low														

Syllabus

INTRODUCTION TO CAD/CAM

The design process - Morphology of design, Product cycle - Computer Aided Design, Benefits of CAD. Role of computers - principles of computer graphics - Current trends in manufacturing engineering - Design for Manufacturing and Assembly - Sequential and concurrent engineering - Rapid prototyping.

SOLID MODELING

Graphic software: coordinate representation- graphic functions, software standards. Graphical Kernel system (GKS) - Initial graphics exchange system (IGES) - Graphic packages. Geometric Modeling - Wire frame, Surface and Solid models - Constructive Solid Geometry (CSG) and Boundary Representation (B-REP) Techniques - Features of Solid Modeling Packages.

FUNDAMENTALS OF CNC MACHINES

CNC Technology - Functions of CNC Control in Machine Tools - Classification of CNC systems -Contouring System - Interpolators, open loop and closed loop CNC systems - CNC Controllers, Direct Numerical Control (DNC Systems). - Work holding devices and tool holding devices-Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centers - Tooling for CNC machines

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models.

GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING

Introduction to CIM and its related activities-History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. - benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning - variant approach and generative approaches - CAPP and CMPP process planning systems.

SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases-factory data collection system -automatic identification methods- Bar code technology-automated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems- application and benefits.

Text l	Books
1	Mikell.P.Groover "Automation, Production Systems and Computer Integrated manufacturing", Pearson Education 2016.
2	Radhakrishnan P, Subramanyan.S. and Raju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.
Refer	ence Books
1	Yorem koren, "Computer Integrated Manufacturing System", McGraw-Hill.
2	Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International.

3	David D.Bedworth Manufacturing", N	David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.											
4	Roger Hanman "Computer Integrated Manufacturing", Addison – Wesley.												
5	Viswanathan.N, Narahari.Y "Performance Modeling & Automated Manufacturing systems" Prentice hall of india pvt. Ltd.												
Cours	e Designers												
S.No	Faculty Name	Designation	Department / College	Email id									
1	J.Sathees babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in									
2	L.Prabhu Assoc.Prof Mech / AVIT prabhu@avit.ac.in												

17M	IFCC15		FI	NITE	ELE	MEN	Т	Ca	ategor	y	L	Т	Р		Credit	
1/10				ANA	ALYS	SIS			CC		2	1	0		3	
Preat Finite solvir soluti provie struct engin Prere	Finite Element Analysis is an advanced computer technique based on numerical methods for solving wide variety of engineering problems. FEA can produce accurate, reliable approximate solutions, at a small fraction of the cost of more rigorous, closed-form analyses. This course provides the basic theoretical knowledge to competently perform finite element analysis for structural and thermal analyses. It also provides an introduction to the finite element analysis from engineering point of view. Prerequisite Strength of Materials. Course Objective															
Cour	se Obje	ctive														
1	To learr	b learn basic principles of finite element analysis procedure														
2	Study th	udy the basics of Standard truss, beam, plane triangular and quadrilateral elements														
3	Analysi	alysis of one and two-dimensional problems														
4	Learn to	o mod	el con	nplex	geom	etry p	oroble	ms an	d solu	tion te	chniqu	ies				
5	5 Understand the concepts of heat transfer and structural analysis															
Cour	se Outc	omes	: On t	he su	ccess	ful co	mple	tion o	f the c	course	, stude	ents w	ill be ab	le to		
CO 1	. Solve	e the p	ohysic	al pro	blem	using	funct	ional	appro	ximati	on met	hod.			Apply	
CO 2	. Derivand t	ve the	shap I prot	e fun olems	ctions	and	stiffn	ess m	atrix f	for one	e dime	nsiona	al structu	ral	Apply	
CO 3	. Derivand t	ve the	shap Il prot	e fun olems	ctions	and	stiffno	ess m	atrix f	for two	o dime	nsiona	al structu	iral	Apply	
CO 4	. Deriv	ve the	shape	func	tions a	and st	iffnes	s mati	rix for	Isopa	rametr	ic elen	nents.		Apply	
CO 5	. Perfo	rm s er brac	tructu cket ai	ral an nd pla	nalysi .tes	s of	mech	anical	com	ponen	ts like	e bean	ns, truss	ses,	Apply	
CO 6	. Perfo	rm th	ermal	analy	vsis of	comp	posite	walss	, com	posite	cylind	ers and	d fins		Apply	
CO 7	. Perfo	rmm pring	mode -mass	l and damp	harm ber sys	onic a stem	analys	sis of	mecha	anical	compo	onents	like bea	ms	Apply	
Марј	ping wit	h Pro	gram	me O	utcor	nes a	nd Pr	ogran	nme S	Specifi	c Out	comes				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSC	3
CO1	. S	S	S	М	_	_	_	_	_	_	_	-	L	L	,	_

CO2.	S	S	S	М	_	_	_	_	_	_	_	_	L	L	
CO3.	S	S	S	М	_	_	_	_	_	_	_	_	L	L	
CO4.	S	S	S	М	_	_	_	_	_	_	_	_	L	L	
CO5.	S	S	S	М	S	_	_	_	_	_	_	_	L	L	
CO6.	S	S	S	М	S	_	_	_	_	_	_	_	L	L	
CO7.	S	S	S	М	S	_	_	_	_	_	_	_	L	L	

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CONCEPTS OF THE FINITE ELEMENT ANALYSIS

Basics of FEA, Derive the stiffness matrix of Spring, bar and beam elements – Derive the stiffness matrix of beam elements – Problems on spring and bar elements – Local and global coordinate systems – assembly of elements, calculation of element stress – simple applications, trusses, Drive the stiffness matrix – Problems on Trusses, stiffness matrix calculation, Member stress calculation.

VARIATIONAL AND WEIGHTED RESIDUAL APPROACHES

Variational problems, Euler's Equation – Problems on solving first order differential using 2-node 1D element – Example problems, solving first order differential equation using 1D-sub-parametric elements – Weighted residual approaches, Galerkin formulation and Point-collocation – Problems on Galerkin formulation and Point-collocation simple regular beam sections with different types of loads – Sub-domain collocation, Least-square minimization – Problems on Sub-domain collocation and Least-square minimization regular beam sections with different types of loads.

TWO DIMENSIONAL ISOPARAMETRIC ELEMENTS AND GAUSS NUMERICAL INTEGRATION

Natural coordinate systems – Interpolation function for Triangular Elements (CST, LST and QST) – Interpolation function for 4-node, 8-node and 9-node quadrilateral Elements – Element stiffness matrix formulation for two dimensional elements – Gauss Numerical Integration – Derivation of one point and two point formula (1D problems).

EIGEN VALUE PROBLEMS FOR ONE DIMENSION PROBLEMS (DYNAMIC CONSIDERATION)

Formulation – Hamilton's Principle – Characteristic polynomial Technique – Element mass matrix formulation for one dimensional Elements (2-node isoparametric and 3-node sup-parametric elements) – Problems for 1-D Problems to find eigenvalues and eigenvectors using 2-node isoparametric and 3-node isoparametric.

STEADY STATE HEAT TRANSFER ANALYSIS

Introduction, straight uniform fin analysis, Derivation 1D Element matrices – Problems on straight uniform fin analysis and Taper fin analysis Heat Flex Boundary Conditions – Analysis of uniform fins using 1D Quadratic Elements – Two Dimensional Steady state Problems using CST Elements – 1-D and 2-D simple Problems using any commercial FEA software.

Text Books

- **1** Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2 Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

- 1Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering",
Prentice Hall of Ind1
- 2 Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
- 3 Cook R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley & Sons, 2001.

Course Designers

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
1	K.Vijayakumar	Assistant Professor	Mech / AVIT	vijayakumar@avit.ac.in
2.	J.Santhosh	Assistant Profesor	Mech/VMKVEC	santhosh@vmkvec.edu.in

17MF1	FC01		HYI	DRAU	LICS	AND		Cat	tegory	Ι	4	Т		P Credit							
17101121		I	PNEU	MATI	C SYS	STEM	S	E	C(PS)	3	5	0		0	0 3						
PREAM The stu pneum	ABLE udents atic sys	comp stems	oleting and it	g this s appl	cours ication	e are ns.	expec	cted to	o unde	erstan	d the	conc	epts (of Hyd	drau	lic and					
PRERI	EQUIS	ITE-N	IL																		
COUR	SE OB	JECT	IVES																		
1	To un	derstar	nd abou	ut basi	cs of f	luid po	wer sy	stems	fundar	nental	s										
2	To ace	quire k	nowle	dge ab	out co	mpone	nts use	ed in h	ydrauli	c and	pneun	natic s	ystems	5							
3	To un	derstar	nd abo	ut the	variou	s types	s of val	lves an	d actu	ators											
4	To de	velop ł	nydrau	lic circ	uits fo	or diffe	rent ap	plicati	ons												
5	To de	velop p	oneum	atic cir	cuits f	or diff	erent a	pplica	tions												
COUR	SE OU	TCON	MES																		
On the s	success	ful con	npletio	on of tl	ne cou	rse, stu	dents	will be	able to	0											
CO1. D applicat	escribe	e the di	ifferen	t drive	system	ns and	identif	fy whic	ch is su	iitable	for sp	ecific		Ur	nder	stand					
CO2. D	CO2. Discuss the working of different components in fluid power system. Understand																				
CO3. E	xplain ents.	about	the util	lizatior	n of cy	linders	, accui	mulato	rs, val	ves an	d vari	ous co	ntrol	Uı	nder	stand					
CO4 .D	evelop	a feasi	ble hy	draulic	circui	t for a	given	applic	ation.						App	oly					
CO5. D	evelop	a feas	ible pr	neumat	ic circ	uit for	a give	n appli	cation.						App	oly					
MAPP	ING W	ITH I	PROG	RAM	ME O	UTCO	MES	AND]	PROG	RAM	ME S	PECI	FIC C	UTCO) MI	ES					
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO	02	PSO3					
CO1	S	L	L			_							L								
CO2	S	L	L			-							L								
CO3	S	М	М			_							L								
CO4	S	S	S	М		М							L								
CO5	S	S	S	М		М							L								
S- Stro	ng; M-	Mediu	ım; L-	Low																	
SYLLA	BUS																				
FLUID	POW	ER SY	STEN	AS AN	D FU	NDAN	1ENT.	ALS													
Introdu	ction to	fluid	power,	Adva	ntages	and A	pplicat	tions o	f fluid	power	syste	m. Bas	sic Lav	ws in F	luid	power					
system,	Types	of flui	d pow	er syste	ems, P	roperti	es of f	luids –	Gener	ral typ	es of f	luids -	- Fluic	l power	: syn	nbols.					

Basic Laws in Fluid power system. Low cost automation.

HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps– Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler

VALVES AND ACTUATORS

Construction of Control Components: Director control valve – 3/2 way valve, 4/2 way valve, Shuttle valve , check valve – pressure control valve –pressure reducing valve, sequence valve-Flow control valve. Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits - Press – Planer.

DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

Text Books:

- 1. Anthony Esposito "Fluid Power with Applications"- Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls"- TMH 2011.
- 3. Parr, A. Hydraulics and pneumatics: a technician's and engineer's guide. Elsevier 2011.

Reference:

- 1. Thomson, "Introduction to Fluid power"- Prentice Hall 2004.
- 2. Majumdar, S.R., Oil hydraulic systems: principles and maintenance. McGraw-Hill- 2003.
- 3. Majumdar, S.R., *Pneumatic systems: principles and maintenance*. Tata McGraw-Hill -1996 Education.

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
01.	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajanshree@gmail.com
02	S.KALYANA KUMAR	Asst.Prof	MECH/AVIT	kalyanakumar@avit.ac.in

17FFC	C81			FIF	стрі			STAR			Categor	ry L	Т	Р	С	redit
17LLC	01							5 LAD			CC	C 0 0 4 2				
PREAM The sign Electrica	BLE ificance l Engin	e of the	e Elect is obli	ric Cir gatory	cuit La to hav	ab is re e the p	nowned	d in the l ideas	e variou about	us fields the Elec	of engin tric Circu	eering iits	applic	catio	ns. F	or an
PRERE	QUISI	TE	NII													
COURS	E OBJ	ECTI	VES													
1	Unde	retord	landa	oin kn	owlode	na abou	it oirou	it laws	and th	ooroma						
2	Gain	know	ledge :		ime do	ge abot main a	nalvsis	of cire	uit tra	nsients						
	Guin	KIIO W	leager	ibout t		inani a	marysis	orent	un nu	instentis.						
3	Unde	erstand	the co	oncept	of resc	onance	in serie	es and j	paralle	l circuit	s.					
COURS	E OUI	ГСОМ	IES													
On the su	uccessf	ul com	pletio	n of the	e cours	e, stud	ents wi	ill be al	ole to							
CO1	Analy	yze and	d solve	the El	lectrica	l circu	its						Ana	alyze	;	
CO2	Knowledge about circuit theorems and apply in analysing problems in Apply															
CO3	Perfo	rm ana	alyse o	f coup	led circ	cuits ar	nd trans	ient re	sponse	of circu	iits.		Ana	alyze	5	
MAPPIN	NG WI	TH P	ROGE	RAMM	IE OU	TCON	AES A	ND PF	ROGR	AMME	SPECIE	FIC O	UTCO) ME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	l PS	O 2	PSO3
CO1	S	S	S	S	S	Μ	S	-	S	М	S	М	S	N	N	-
CO2	S	S	S	S	S	S	S	-	S	М	S	Μ	S	N	M	-
CO3	S	S	S	М	M	M	S	-	S	M	S	L	S	N	M	-
S- Strong	g; M-M	ledium	n; L-Lo	W												
							SYL	LABU	S							
LIST OI	F EXP	ERIM	ENTS													
1. V	'erifica	tion of	f Ohm'	s Law												
2. V	'erifica	tion of	f Kirch	hoff's	laws											
3. V	'erifica	tion of	f Theve	enin's '	Theore	em										
4. V	<i>'erifica</i>	tion of	f Norto	on's Th	eorem											
5. V	<i>'erifica</i>	tion of	f Super	positio	on theo	rem										

- 6. Verification of Reciprocity theorem
- 7. Verification of Maximum Power Transfer theorem
- 8. Time Domain analysis of RL transient circuits
- 9. Time Domain analysis of RC transient circuits
- 10. Series Resonance Circuit
- 11. Parallel Resonance Circuit

12. Three Phase Power Measurement by Two Wattmeter method

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	E-Mail ID
1.	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in
2.	D. SARANYA	AP/GRADE-II	EEE	

1700000	FLUID MECHANICS AND STDENCTH OF MATERIALS LAR	Category	L	Т	Р	Credit
1/CVCC92	SIRENGIN OF MATERIALS LAD	CC	0	0	4	2

Preamble

The aim of the subject is to provide make the students to understand the basic mechanism of Fluids and strength of materials.

Prerequisite

Nil

Course Objectives

1. To understand the concepts of fluid mechanics

2. To get hands on experience to conduct testing of materials.

3. To perform operations in hydraulic machineries and test various materials.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Measure the flow in pipe section using orificemeter and venturimeter and discharge in channels using notches	Apply
Co2. Determine the major and minor losses in pipes	Apply
Co3. Determine the behavior of structural elements, such as bars, beams and	Apply
springs subjected to tension, compression, shear, bending, and torsion by means of	
experiments	
<u> </u>	1

Mappi	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L	-	-	-	Μ	-	-	-	-	L	-	-
CO2	S	Μ	Μ	L	-	-	-	Μ	-	-	Μ	-	L	-	L
CO3	S	Μ	L	Μ	L	L	-	Μ	L	Μ	Μ	-	L	L	L

S- Strong; M-Medium; L-Low

List of Experiments

- 1. A comparative analysis of Coefficient of discharge using Orifice meter & venturimeter.
- 2. Determination of pipe loses(major & minor).
- 3. Determination of Tensile strength and Compression strength on a given specimen.
- 4. Determination of shear strength of Mild steel and Aluminium rods
- 5. Determination of Torsional strength of mild steel rod
- 6. Determination of Impact strength
- 7. Conduct of Hardness test on metals Brinell and Rockwell Hardness.
- 8. Conduct of Deflection test on beams

Text Books

1. 'Fluid mechanics and strength of materials lab manual', Department of Civil engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

Reference Books

- 1. Modi P.N and Seth S.M, "Hydraulics and Fluid Mechanics Including Hydraulic Machines" Standard Book House" New Delhi, 20thEdition 2015.
- 2. Bansal R.K, "Fluid Mechanics and Hydraulic Machines" Laxmi Publications, New Delhi, 2015.
- 3. Rajput. R.K, "A Text book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company, New Delhi, 2011.

Course Designers:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	A.Fizoor Rahman	AsstProf	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in
2	M.Senthilkumar	Asst.Prof	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

		_	SEMICONDUCTOR DEVICES Category L T								Р		Credit			
171	ECCC81				L	AB				CC		0	0	4		2
PREAM To reinfo electrical the capab	BLE rce learnin characteri ility for pe	ng in t istics of erform	the accord of varioning var	ompany ous sen ious an	ving ser nicondu alysis c	micond ctor de	uctor d evices, conduct	levices such as tor dev	course diodes ices.	through 5, BJTs a	hands-or and FET	n exp s. To	erien prov	ice by o vide the	examine stude	ning the ent with
PRERQU	U ISITE- N	۸IL														
COURSI	E OBJEC	TIVE	S													
1	To e	emphas	size the	practic	al, hand	ds-on c	ompon	ent of t	his cour	rse.						
2	Тос	comple	ement	the t	heoretic	cal mat	terial	present	ed in	lecture	, and	as s	such,	, is i	integra	l and
2	indis	spensit	ble to th	ne mast	ery of t	he subj	ect.	1. 1	DIT	1 1 1 1 1 1 1						
3	Tos	tudy e	xperim	entally	the cha	racteris	stics of	diodes,	BJT's	and FET	⁷ S.					
4	Tov	verity p	oractica	lly the	respons	se of va	rious s	pecial p	ourpose	electron	devices.	•	• •			
5	To	provid	e stude	ents en	gineerii	ng skil	ls by	way of	bread	board ci	rcuit de	sıgn	with	electr	onic o	levices
COUDSI		Compo	onents.													
On the su	n the successful completion of the course, students will be able to															
On the su	iccessiui c			the cou	rse, stu	idents v	viii be a	able to		1 5375	1	1 (A	
COI. Co	nstruct ai	nd fin	d the	ripple	factor	and ef	ficienc	y of F	IWK a	nd FWF	by con	nduct	ing		Appi	У
CO2 Cor	nstruct clir	nnor ar	nd clam	nor cir	cuite for	r any a	ivon en	acificat	ions an	d illustra	to their (outout	t		Appl	V
CO2. CO1	torming th	ermine the given transistor parameters from the characteristics of BJT in CE and CC Apply														
CO3. De	ation.															
CO4. Design transistor voltage regulator for given specifications and verify its output. Analyze																
CO5. Examine the characteristics of SCR, DIAC and TRIAC. Analyze																
MAPPIN	G WITH	I PRO	GRAM	IME O	UTCO	MES A	AND P	ROGR	AMME	E SPEC	FIC OU	JTCC)ME	S		
COS		\sim	DO3	DO4	DO2	DO6	DO7	DUS	POO	PO10	DO11	PO	12	DSO1	DSUJ	DSO3
C03		. 02 M	105 M	104	105	100	107	100	109	1010	1011	10	12	1301	1302 M	1505
01	S	M	M	-	-	-	M	-	M	-	M	-	•	S	M	M
CO2	S	M	M	-	-	-	M	-	M	-	M	-		S	M	M
CO3	S	M	M	-	-	-	M	-	M	-	M	-	•	S	M	M
C04	S	M	M	-	-	-	M	-	M	-	M	-	•	S	M	M
0.0	S N N F	M	M	-	-	-	M	-	М	-	М	-		8	M	M
S- Strong	; M-Medit	um; L·	-LOW													
LIST OF 1. Half W 2. Full W 3. Clippe: 4. Clamp 5. Input/c 6. Input/c 7. Transfe 8. Voltag 9. TRIAC 10. SCR COURSI	LIST OF EXPERIMENTS 1. Half Wave Rectifier 2. Full Wave Rectifier 3. Clipper 4. Clamper 5. Input/output Characteristics of CE Amplifier 6. Input/output Characteristics of CC Amplifier 7. Transfer Characteristics of JFET 8. Voltage Regulator 9. TRIAC, DIAC 10. SCR COURSE DESIGNERS															
S.No.	Name	e of th	e Fac	ulty		<u>)esign</u>	ation]	Depar	tment		0	M	<u>ail ID</u>		
1	Dr.P.Selva	am				Profe	essor		EC	CE	hodeee	@vml	kvec	.edu.in		
2	Dr. F.Shee		P		As	sociate	Protes	sor	EC	CE	sheela@	vmk و	vec.	edu.1n		
3	Mr.N.Manikanda Devarajan Assistant Professor ECE manikandadevarajan@vmkvec.edu.in															
4	Mr.S.Selv	Mr.S.Selvam Assistant Professor (Gr-II) ECE selvam@avit.ac.in										@avit	t.ac.i	n		

17ECCC82 DIGITAL LOGIC CIRCUITS & DESIGN Category L										L T	Р	Credit			
						LAB					CC	0	0	4	2
PREAM	IBLE														
To provi	de experi	ence &	explo	re desig	gns in	analyzi	ing and	d testii	ng of o	digital l	ogic circ	cuits lik	e comb	inationa	and and
sequentia	al circuits	using la	ıb instr	uments	as wel	l as sir	nulatio	n softv	ware.						
Prerequi	isite : Bas	sic Elect	rical a	nd Elec	tronics	Engin	eering								
PRERQ	UISITE														
1	7EEES0	3 - Basi	cs of E	Electric	al and	Electr	onics	Engine	eering						
COURS	E OBJE	CTIVES	5												
1	To i	mpart th	e knov	vledge i	n analy	sis and	d desig	n of va	arious	combina	ational lo	ogic circ	uits.		
2	To le	earn abo	ut desi	gn and	analysi	is of se	quenti	al circu	its us	ing flip	flops.				
3	3 To Expose students about design and simulation of logic circuits using HDL.														
COURS	COURSE OUTCOMES On the successful completion of the course, students will be able to														
On the su	uccessful	complet	ion of	the cou	rse, stu	idents y	will be	able to)						
CO1.Cor	nstruct var	tious log	gic circ	uits.										Appl	y
CO2. De	CO2. Demonstrate the various combinational logic circuits by using discrete components Apply												y		
CO3. An	CO3. Analyze different sequential logic circuits by using discrete components. Analyze														
CO4. Test the various digital logic circuits by using simulation software. Evaluate															
CO5. Measure and record the experimental data for various digital circuits. Evaluate															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	<u> </u>	-	-	-	M	-	-	-	M	-	-	L	-	-	-
CO^2	2		_	_	S	_	_	-	M	_	_	I	S	_	_
CO3	2	М	М	М	M	_	_	-	M	_	_	I	-	_	_
C04	2	M	-	-	M			-	M	_		I	M	M	M
C05	2	M	_	_	M	_	_	-	M	_	_	I	-	M	-
S- Strong	r M-Med	ium· I -	Iow	_	141	_	_		111			L		141	
List of F	vnerime	nts													
Hardwar	e Experir	nents													
1	Design a	and impl	ement	ation of	Adder	s using	logic	gates							
2	Design a	and impl	ement	ation of	Sub tr	actors	using 1	ogic g	ates						
3	Design a	and impl	ement	ation of	BCD	to Exce	-3	code co	nverte	r using	logic ga	tes			
4.	Design a	and impl	ementa	ation of	Binary	to Gr	av cod	e conv	erter u	sing log	ic gates				
5.	Design a	and impl	ementa	ation of	4 bit F	SCD ad	lder us	ing IC	7483						
6.	Design a	and impl	ementa	ation of	2 Bit I	Magnit	ude co	mpara	or usi	ng logic	gates				
7.	Design a	and impl	ementa	ation of	Multir	olexer a	and De	-Multi	plexer	using l	ogic gate	s			
8.	Design a	and impl	ementa	ation of	encod	er and	decode	r using	g logic	gates	0 0				
9.	Design a	und impl	ementa	ation of	3 bit s	vnchro	nous u	p/dow	n cour	nter.					
10.	Impleme	entation	of SIS	O. SIPO	D. and	PISO s	hift res	zisters	using	flip flor	s.				
Software	e Experir	nents u	sing H	DL	,				0	r ·r					
1. De	sign and S	Simulati	on of H	Full add	er circi	uit usin	ig Gate	e level	model	ling					
2. De	sign and S	Simulati	on of 2	2X2 mu	ltiplier	circuit	using	structu	ıral lev	vel mod	eling.				
3. Design and Simulation of 8 to 1 Multiplexer circuit using behavioural level modeling.															
COURS	E DESIG	NERS	(0-11				0			
S.No.	Name of	the Fac	cultv	D	esignat	ion		De	partn	ient		N	1ail ID		
1	Mr.B.Ra	jasekara	an	Assoc	iate Pr	ofesso	r		ECE		rajaseka	ran@vn	nkvec.e	du.in	

-	1.11.12.11 cu jus chiai un		202	i ujus en un el vinni ve el un
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17MECC92 DYNAMICS LAB Category L T P										Cı	redit						
1710	ILCCJZ			ы						CC	0	0		4		2	
Prear	Preamble																
The a dynar	im of th nic char	e subj acteri	ect is stics c	to pro f varic	vide si ous ma	ufficie achine	nt kno ries.	wledg	e and	ability to	apply	the vari	ious (conc	epts o	f the	
Prere	equisite	- NIL	4														
Cour	Course Objective																
1	1 To learn the mass moment of inertia and Radius of gyration of the compound pendulum.																
2	To learn experimentally the moment of inertia of a rectangular bar of a Bifilar suspension system.																
3	To stu system	dy exp	perime	entally	the m	omen	t of ine	ertia a	nd rad	lius of a	circular	plate T	rifila	r sus	pensic	on	
4	4 The objective of this experiment to determine the natural frequency if a spring mass system.																
5 The objective of this centrifugal governor to study the dynamic characteristics and to determine its controlling force at various positions and compare the experimental and theoretical values.																	
Course Outcomes: On the successful completion of the course, students will be able to																	
CO1.	Estin Susp	nate t ensior	he ma n, com	ass mo pound	oment pend	of in ulum.	ertia	of usi	ng , b	i-filar su	uspensi	on Trifi	lar	Арр	oly		
CO2.	Appl and t	y and he gy	Inspe roscop	ct the bic effe	critica ect and	l spee l coup	d of sh le on r	naft un motori	ider th ized gy	e given l vroscope	oad coı	nditions	5	App	oly		
CO3.	Dete Hartı	rmine nell go	the ap	oplicat rs.	ion of	chara	cterist	ic curv	ves of	Watt, Po	orter, Pr	oell and	b	App	oly		
CO4.	To a	pply a	nd De	termir	e the	Natur	al Frec	quency	/ of Sp	ring Mas	s Syste	m.		App	oly		
Mapp	ping wit	th Pro	gram	me Oı	ıtcom	es and	l Prog	ramn	ne Spe	cific Ou	tcomes						
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO10	PO1	PO1	PS	0	PSO	PSO	
CO1	S	M	L	4 M	L	-	-	-	9	-	-	-	L		-	-	
CO2	S	М	L	М	L	-	-	-		-	-	-	L				
CO3	S	L	L	М	L	-		-		-	-	-	- L				
CO4	S	L	L	М	L	-	-	-		-	-	-	L		-	-	
S- Sti	rong; M	I-Med	lium;	L-Lov	V	I	I	I	I	I			1	I	l		

Syllabus

LIST OF EXPERIMENTS

1. Perform an Experiment on Watt and Porter Governor and to find the stability and sensitivity.

2. To Determine the controlling force and speed of a Proell Governor.

3. To Determine the position of sleeve against controlling force and speed of a Hartnell Governor.

4. Determination of Gyroscopic couple using Motorized Gyroscope.

5. Determination of critical speed of Whirling Shaft.

6. Determination of Natural Frequency of single degree of freedom system in a spring mass system.

7. Determination of Radius of Gyration- compound Pendulum

8. To Determine the moment of inertia by Trifilar and Bifilar Suspension.

Text Books

1	DYNAMICS Lab	Manual										
Course	Course Designers											
S.No	Faculty Name	Designation	Department / Name of the College	Email id								
1	J.Rabi	Associate Professor	Mech / VMKVEC	rabi@vmkvec.edu.in								
2	R.MAHESH	Asst. Prof	Mech / AVIT	mahesh@avit.ac.in								

17EECC87 CONTROL						I. SVS	TFM	SLAR			Catego	gory L T P Crea			
17EEC	.07			CO	NIKO) LAD			CC	0	0	4	2
PREAM oscillosce and bea advanced	Control Systems simulation Lab consists of multiple workstations, each equipped with an oscilloscope, digital multi-meter, PID trainers, control system trainers and stand alone inverted-pendulum, ball and beam control, magnetic-levitation trainers. This lab also covers the industrial implementation of advanced control systems via different computer tools such as MATLAB and Simulink.														
PRERE	QUISI	TE		via all	lerent	compe		515 544							
NIL COURS	E OBJ	ECTI	VES												
1	To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response To understand the different ways of system representations such as Transfer function representation														
2	To as	ssess tl	he syst	em per	formar	nce usi	ng time	e doma	in anal	ysis and	l method	ls for i	mprovi	ng it	
3	To as perfo	ssess tl rmanc	he syst e	em per	formar	nce usii	ng freq	uency	domaiı	n analys	is and te	echniqu	les for	impro	ving the
4	4 To design various controllers and compensators to improve system performance														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1	How control	to imp oller a	orove tl nd/or a	he syste a comp	em per ensatoi	formar for a s	ce by specific	selectir c applic	ng a sur cation	itable	τ	Unders	tand		
CO2	Apply the sy	y vario /stem j	ous tim perforr	e doma nance	ain and	freque	ency do	omain t	echniq	ues to a	ssess	Apply			
CO3	Apply Powe	y vario er syste	ous con ems, ele	trol str	ategies drives	s to dif s etc)	ferent a	applica	tions(e	xample	:	Analyz	e		
CO4	Test s representations	system sentati ms	on and	ollabili applic	ty and ations	observ of state	ability e space	using s repres	state sp sentatio	bace on to var	rious A	Analyz	e and C	Create	
MAPPIN	NG WI	TH P	ROGF	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO3
01	8	<u>S</u> c		M	2	-	-	-	M		-	L	S	M	S
CO2	S	3	L	М	S	-	-	L	М	L	М	-	S	M	-
CO3	S	S	S	М	S	-	L	-	М	L	-	М	S	Μ	S
CO4	S	S	-	М	S	L	-	-	М	L	-	М	S	М	М
S- Strong	g; M-M	ledium	n; L-Lo	W									•		

SYLLABUS

LIST OF EXPERIMENTS

- 1. Transfer function of self and separately excited DC Generator.
- 2. Transfer function of Armature and Field controlled DC Motor.
- 3. Transfer function of AC Servomotor.
- 4. Frequency response of Lag, Lead & Lag Lead networks.
- 5. Study of Synchros and DC Stepper Motor
- 6. Transfer function of Ward Leonard method of speed control of DC motor.
- 7. Study of DC Position Control system and study of various transducers
- 8. Study of P, PI and PID Controllers (First Order).
- 9. Analog and simulation of type o and type 1 systems
- 10. Stability analysis of Linear Systems
- 11. Digital simulation of first order systems
- 12. Digital simulation of second order systems

COURSE DESIGNERS	
------------------	--

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-mail id
1.	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in
2.	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in

17ECCC96	SENSORS AND	Category	L	Т	Р	Credit
	ELECTRONIC MEASUREMENTS	CC	0	0	4	2
	LAB					

Preamble

This course provides comprehensive idea about working operation of various types of sensors used to measure various physical quantities. measurement techniques to assess the quality of processes, components, systems..

Prerequisite

Nil

Instructional Objective

1	Uses technical knowledge, design methodology, and appropriate design tools and related resources.														
2	Distin Analy	guishe zes/ev	es b valuate	etwee es pro	en d gress	iffere of de	nt c sign.	lesign	ste	eps a	and	carrie	es o	ut s	teps;
3	3 Student will learn the different kind of measurements ie: Displacement, speed, temperature.														
4 To learn the measurement of capacitance & inductance.															
5 Student will learn the signal conditional circuits ie: Analog to Digital converter.															
Course Outcomes: On the successful completion of the course, students will be able to															
CO1	toCO1.Select appropriate transducer to measure given parameters.Apply														
CO2	CO2. Construct a proper AC/ DC bridges for measurement of R, L & C. Apply														
CO3	. Ana	lyze tl	ne cha	racter	ristics	of str	ain ga	auges.	•					Anal	yse
Мар	ping w	rith Pi	ogra	mme	Outc	omes	and I	Progr	amm	e Spe	cific (Outco	mes		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
0	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
C01	S	Μ	Μ	-	Μ	-	-	-	Μ	-	-	M	S	S	Μ
CO2	S	S	М	М	М	-	-	-	М	-	-	М	S	S	-
CO3	CO3 S M M - M - - M - M S S M														
S- St	S- Strong; M-Medium; L-Low														

Syllabus

List of Experiments

- 1. Speed measurement using Photoelectric tachometer
- 2. Digital transducer shaft angle encoder
- 3. Strain gauge characteristics.
- 4. Torque measurement
- 5. Displacement measurement using potentiometric transducer.
- 6. Measurement of Temperature using RTD.
- 7. Measurement of temperature using Thermocouple.
- 8. Measurement of Capacitance using Schering bridge.
- 9. Measurement of Resistance using Wein bridge.
- 10. Measurement of Inductance using Anderson bridge.

		0	U	
Refer	ence Books			
1	Laboratory reference	e manual		
Cours	e Designers			
S.No	Faculty Name	Designation	Department	Email id
1	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in
2	Mr. P. Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

17ECCC95	MICROCONTROLLERS LAB	Category	L	Т	Р	Credit
		CC	0	0	4	2

PREAMBLE:

Microcontroller is one of the usually used methods in many electronic systems and automatic devices. It is essential to know their operation and how they can be used in automated control system applications. The main objective of this lab course is to gain the practical hands on experience of programming the 8086 microprocessor and 8051 microcontroller and gain knowledge on interfacing of different peripherals to microcontroller. Students can be able to write the assembly language programming skills, knowledge in interfacing devices and real time applications of microcontroller.

PRERQUISITE – Nil

COURSE OBJECTIVES

- 1. To Learns Assembly Language Programming For Arithmetic Operations Using 8051.
- 2. To Study The Various Peripheral Devices And Interfacing With Microcontroller.
- 3. To Expand Writing Skills For Assembly Language Programming For Microcontroller.
- 4. Develop Assembly Language Programs For Various Applications Using 8051 Microcontroller.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Write ALP Programming For Microprocessor And Microcontroller	Understand
CO2. Interface Different I/Os With Microcontroller	Apply
CO3. Generate Different Waveforms Using Microcontroller	Apply
CO4. Design Circuits For Various Applications Using Microcontrollers	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М		S				S	L		М	-	-	
CO2	S	S	М		S	М			S	L		М	S	S	-
CO3	S	S	М		S	М			S	L		М	S	-	-
CO4	S	S	М		S	S			S	L		М	-	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. 8085 & 8086 Assembly Language Program (ALP) for Arithmetic Operations.
- 2. 8051 Assembly Language Program (ALP) for Arithmetic Operations.
- 3. 8051 Assembly Language Program (ALP) for Logical Operations.

- 4. 8051 Assembly Language Program (ALP) for Bit Manipulation Operations.
- 5. 8051 Assembly Language Program (ALP) for arrange the numbers in Ascending and Descending order.
- 6. 8051 Assembly Language Program (ALP) for Interrupt & UART Operations.
- 7. Interfacing an ADC to 8051 Controller.
- 8. Interfacing DAC to 8051 Controller and generate Square, Triangular & Saw-tooth waveform.
- 9. Interfacing a Stepper motor to 8051 Controller and operate it in clockwise and anti-clockwise directions. Interfacing a Keyboard & Display controller (8279) to 8051 Controller.

REFERENCE

1. Laboratory Reference Manual

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Mr. R.Karthikeyan	rrmdkarthikeyan@avit.ac.in
2	Dr. R.Ramani	ramaniapece@gmail.com
3	Mr. N.Manikandadevarajan	manikandadevarajan@vmkvec.edu.in
4	Mr. G.Suresh kumar	sureshkumar@vmkvec.edu.in

17MT	TCC81	81PROGRAMMABLE LOGICCategoryLTP81CONTROLLERS LAB												Cre	edit
		CON	TROL	LERS	LAB			C	С	()	0	4	2	2
PREA	AMBLI	E - Thi	s cours	se prov	ides co	mprehen	nsive ide	ea about	workin	g operat	ion of P	LC cont	rol the v	various	
autom	natic dev	vices		1		1									
PREF	REQUI	SITE ·	-												
COU	RSE O	BJEC	TIVES	5											
1	Uses	technic	al kno	wledge	PLC o	operation	of vari	ous con	trol the	parts.					
2	Distin	iguishe	s betw	een dif	ferent	control s	teps and	d carries	out step	os; Anal	yzes/eva	aluates p	rogress	of desig	n.
3	Stude	nt will	learn t	he diff	erent k	ind of co	ontrol ie	: ON / C	OFF, spe	ed, tem	perature	.etc			
4	Stude	nt will	learn t	he time	er and o	counter.									
5	Stude	nt will	learn t	he adv	anced o	controlle	r device	es.							
COU	RSE O	UTCO	MES												
On the	e succes	ssful co	omplet	ion of t	he cou	rse, stud	ents wil	ll be abl	e to						
CO1.	Constru	uct and	Verify	the pe	erforma	ance of v	arious t	ypes of	control	using PI	LC ladde	er diagra	ım.	Apply	
CO2.	Interfac	ce stepj	per mo	tor, D	C moto	or with P	LC mod	dule to c	ontrol tl	ne speed	of rotat	ion.		Apply	
CO3.	Design	and te	st ON /	OFF c	ontrol i	n flow a	nd press	sure pro	cess con	trol usin	g PLC.			Apply	
CO4.7	Test vai	rious re	elays ar	nd traff	ic light	t control	using P	PLC.						Analyse	
MAP	PING V	WITH	PROC	GRAM	ME O	UTCON	AES AN	ND PRC	OGRAM	IME SF	PECIFI	C OUT	COMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	М	L	-	М	-	М	-	-	М	S	М	-
CO2	S	Μ	Μ	М	Μ	-	-	-	М	-	-	М	S	М	-
CO3	S	S	S	S	L	-	М	-	М	-	L	М	S	М	М
CO4	S	Μ	Μ	Μ	Μ	-	-	-	М	-	-	Μ	S	М	М
S- Str	ong; M	-Mediu	im; L-l	Low		-						•		•	

SYLLABUS

- 1. PLC ladder diagram using logic gates.
- 2. Stepper Motor interface.
- 3. D.C motor controller interface.
- 4. Linear actuation of hydraulic cylinder with counter and speed control.
- 5. Sequential operation of pneumatic cylinders.
- 6. Traffic light controller.
- 7. Speed control of DC motor using PLC.
- 8. Testing of Relays using PLC.
- 9. Design of ON / OFF control in Flow and Pressure process control in PLC.

Reference Books

1. Laboratory reference manual

COURSE DESIGNERS

COU	NSE DESIGNERS			
S.No	Name of the	Designation	Department	Email ID
	Faculty			
1	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in
2	Mr.G.Murali	Assistant Professor	ECE	Muralig@vmkvec.edu.in
3	Dr. L. K. Hema	Professor & Head	ECE	hemalk@avit.ac.in

17MECC88 COMPUTER INTEGRATED MANUFACTURING LAB Category L T P						C	redit								
			Μ	ANU	FACT	URIN	IG LA	В		CC		0 () 4		2
Prea This	mble course	e provi	des the	basic	know	ledge	about	CNC r	nachir	ne and CN	C progi	amm	ing		
Prer	equisi	ite – N	IL												
Cour	se Ot	ojectiv	e												
1	To e	xplain	the bas	sics of	part p	rograr	nming	for tu	rning	and milling	g using	G &	M codes	•	
2	To c	onstruc	t the C	CNC p	rogran	n for a	given	profile	e in m	illing.					
3	Mak	e use o	f Cann	ed Cy	cle, M	lirrorir	ng and	subro	utines	for machin	ning a g	given	profile		
4	To C	Constru	ct the p	orogra	m for a	a give	n profi	ile in tı	urning						
5	To e	xamine	e the to	ol pat	h simu	lation	and g	enerati	on of	codes usin	g Softv	vare			
Cour	rse Ou	itcome	s: On	the su	ccessf	ful cor	npleti	on of t	he co	urse, stud	ents wi	ll be	able to		
CO1.	Т	o demo	onstrate	e the l	oasic k	nowle	edge al	oout G	and N	A codes			Un	derstand	l
CO2.	A ci	pply th rcular	ne prog interpo	ramm plation	ing kn , circu	owled lar & 1	ge to y rectan	write th gular p	ne pro ocket	gram for li ing	near ar	nd	Ар	ply	
CO3.	A w	pply th rite the	e knov CNC	vledge progra	e of mi am	rrorin	g, can	ned cy	cle an	d subroutii	ne conc	epts t	o Ap	ply	
CO4.	A fa	pply th cing, g	ie knov groovin	vledge 1g, dril	e of dif ling, b	fferent	types and th	of can readin	ned c g etc.,	ycles inclu	ding tu	rning	, Ap	ply	
CO5	A S	.nalyze oftwar	e the to e	ool pa	th sin	nulatio	on and	d gene	ratior	n of codes	using		An	alyze	
Map	ping v	with P	rogran	nme C	outcon	nes an	d Pro	gramı	ne Sp	ecific Out	comes				
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO 2	I PSO 1	PSO 2	PSO 3
CO1	М	L	L	-	-	-	-	-	-	-	-	L	М	L	
CO2	S	S	М	-	-	-	-	-	М	-	-	М	М	L	
CO3	S	S	S	-	-	-	-	-	М	-	-	Μ	М	L	
CO4	S	S	S	-	-	-	-	-	М	-	-	Μ	М	L	
CO5	S	S	S	-	S	-	-	-	S	-	-	S	Μ	L	
S-St	rong;	M-Me	edium;	L-Lo	W										
SYL	LABU	US:													
LIST	OFI	EXPE	RIME	NTS:											
Intro	ducti	on:													
1	. Stu	udy of (G and I	M cod	es										

- 2. Manual Part Programming for CNC Machines using Standard G and M Code.
- 3. Machining practice on Trainer Type CNC Machines
- 4. Simulation of tool path using CAM simulation Software

Part programming for CNC Milling:

- 1. Point to point motions
- 2. Linear motions
- 3. Circular interpolations
- 4. Contour motions
- 5. Rectangular pocketing
- 6. Mirroring
- 7. Circular Pocketing
- 8. Fixed /canned cycles
- 9. Subroutines

Part programming for CNC Turning :

- 1. Turning and facing
- 2. Step turning and Taper Turning
- 3. Grooving
- 4. Fixed/Canned Cycles
- 5. Thread cutting Cycles
- 6. Peck Drilling Cycles

Text Books

1 CAM LAB Manual

Course Designers

Course I	Jesigners			
S.No	Faculty Name	Designation	Department/ College	Email id
1	M.SARAVANAN	Asst. Professor	Mech / VMKVEC	msaravanan94@gmail.com
2	L.PRABHU	Assoc.Professor	Mech/ AVIT	prabhu@avit.ac.in

CC 0 0 4 2 PREAMBLE Robotics is the prominent component of manufacturing automation which will affect human labor at all levels, from unskilled workers to professional engineers and managers of production. Future robots may applications outside of the factory in banks, restaurants, and even homes. PRERQUISITE COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES 0n the successful completion of the course, students will be able to CO1.Implement the programming and control of robots Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COG CO3 S M M - - M - L S M M CO2 Po3 PO4 PO5 PO6 PO7 PO8 PO10 PO11 PO12 PS02 PS03 CO2	171	MTCC8	32			ROBO	OTICS	LAB			Ca	tegory	L	, T	Р	Credit	
PREAMBLE Robotics is the prominent component of manufacturing automation which will affect human labor at all levels, from unskilled workers to professional engineers and managers of production. Future robots may applications outside of the factory in banks, restaurants, and even homes. PRERQUISITE COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 COS OI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 COS S moder of robots based on configuration and application. Study of different types of robots based on configuration and application. Simulation of Forward and Inverse Kinematics using Robo Analyzer. Simulation of Forward and Inverse Kinematics using Robo Analyzer. Simulation of transforma												CC	0	0	4	2	
Robotics is the prominent component of manufacturing automation which will affect human labor at all levels, from unskilled workers to professional engineers and managers of production. Future robots may applications outside of the factory in banks, restaurants, and even homes. PREQUISITE COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to COULSITE MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03 CO1 S M M L - - M - L L S M M COS PO1 PO2 PO3 PO5 PO7 PO8 PO9 PO11 PO12	PREA	MBLE	1													I	
from unskilled workers to professional engineers and managers of production. Future robots may applications outside of the factory in banks, restaurants, and even homes. PRERQUISITE COURSE OBJECTIVES To introduce different types of robotics and demonstrate them to identify different parts and components To write programming for simple operations like pick and place, rotoxim etc. To write programming for simple operations like pick and place, rotoxim etc. To write programming for simple operations like pick and place, rotoxim etc. To write programming for simple operations like pick and place, rotoxim etc. To write programming and control of robots COURSE OUTCOMES On the successful completion of the course, students will be able to COLImplement the programming and control of robots OLIMPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 Predict the Path and trajectory planning for given environment COU S POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M L M - L L S M M CO2 S S S M M M M M - M M S M M S- Strong; M-Medium; L-Low List of Experiments 1) Study of different types of robots based on configuration and application. 2) Study of components of robots with drive system and end effectors. 3) Study of components of robots with drive system and end effectors. 4) Simulation of Korkspace Analysis of a 6 axis robot. 5) Simulation of Korkspace Analysis of a 6 axis robot. 5) Simulation of Ackspace Analysis of a 6 axis robot. 5) Simulation of Ackspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using Robo Analyzer. 5) Simulation of accuracy, repeatability and resolution. 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. 7) Verification of transformation (Position a	Roboti	cs is th	e pron	ninent (compo	nent of	manuf	acturii	ng auto	omatior	n which	will affe	ect hum	an labo	or at all	l levels,	
outside of the factory in banks, restaurants, and even homes. PRERQUISITE COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to CO2.Predict the Path and trajectory planning for given environment Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS COI S M M M M M M COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03 COS PO1 PO3 PO6 PO7 PO8 PO9 PO10 PO11 <t< td=""><td>from u</td><td>nskilled</td><td>1 work</td><td>ters to</td><td>profess</td><td>sional e</td><td>enginee</td><td>ers and</td><td>mana</td><td>gers of</td><td>² product</td><td>tion. Fut</td><td>ture rob</td><td>oots ma</td><td>v appl</td><td>ications</td></t<>	from u	nskilled	1 work	ters to	profess	sional e	enginee	ers and	mana	gers of	² product	tion. Fut	ture rob	oots ma	v appl	ications	
PRERQUISITE COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Implement the programming and control of robots Apply MAPPING WITH PROCRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS COI ON ON MAPPING WITH PROCRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS COS ON ON COS PO6 PO8 PO9 PO1 PO1 PO1 PO1 PO12 PS01 PS02 PS03 COS PO1 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12	outside	e of the	factor	v in ba	nks. re	stauran	ts. and	even h	nomes.	8	F				-,		
COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to COLImplement the programming and control of robots Apply COULTOMES On the successful completion of the course, students will be able to COLIMPLEMENT PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS COI Implement the programming and control of robots Apply COULTOMES COILimplement the programming and control of robots Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS COI PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 COS PO1 PO4 PO5 PO6<	PRER	OUISI	TE .	/	,		,,										
COURSE OBJECTIVES 1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to C01.Implement the programming and control of robots Apply C02.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M L - - M - L L S M M CO2 S S S M M - - M - L L S M M CO2 S S S M M - - M M M S		X •															
1 To introduce different types of robotics and demonstrate them to identify different parts and components 2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to C01.Implement the programming and control of robots Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M L - - M - L L S M M CO2 S S S M M - - M - L L S M M CO2 S S S M M - - M - L L <td>COUR</td> <td>RSE OF</td> <td>BJECT</td> <td>IVES</td> <td></td>	COUR	RSE OF	BJECT	IVES													
2 To write programming for simple operations like pick and place, rotoxim etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to COU.Implement the programming and control of robots Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS COI S COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO2 PS01 PS02 PS03 CO2 S S M M L - - M - L L S M M CO2 S S M M M - - M - L L S M M CO2 S S S M M -	1	To in	troduc	e diffe	erent	ypes o	of robo	otics a	and d	emonst	rate the	m to i	dentify	differ	ent pa	rts and	
2 10 write programming for simple operations like pick and place, rotoxinf etc. 3 To practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to C02.Predict the Path and trajectory planning for given environment Apply C02.Predict the Path and trajectory planning for given environment Apply C02.Predict the Path and trajectory planning for given environment Apply C02.Predict the Path and trajectory planning for given environment Apply C02.Predict the Path and trajectory planning for given environment Apply C01 S M M L - - M - L L S M M C02 S S S M M - - M - L L S M M C02 S S S M M - - M - L L S M M C02 S S S M M - - M - L <	2	compo	onents	~~~~	in a fai			4.0.0.1		lr and a	1	4					
3 10 practice with the simulation from simple to six axis robot. COURSE OUTCOMES On the successful completion of the course, students will be able to COLI.Implement the programming and control of robots Apply COLI.Implement the programming and control of robots Apply COLI.Implement the programming and control of robots CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO6 PO7 PO8 PO10 PO11 PO12 PSO2 PSO3 PO4 PO5 PO9 PO10 PO11 PO12 PSO3 PO4 PO5	2	TO Wr	ite pro	gramm	ing to	simple	e opera	tions I	іке ріс	$\frac{1}{1}$	place, ro	toxim et	.c.				
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Implement the programming and control of robots Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO11 PO12 PSO1 PSO2 PSO2 PSO3 CO1 S M - L L S M M M M M M M M M M CO S M M M M M M M M M M M M M M M <th col<="" td=""><td>3</td><td>To pra</td><td>actice v</td><td>with the</td><td>e simu</td><td>ation fi</td><td>rom sin</td><td>nple to</td><td>o six az</td><td>kis robo</td><td>ot.</td><td></td><td></td><td></td><td></td><td></td></th>	<td>3</td> <td>To pra</td> <td>actice v</td> <td>with the</td> <td>e simu</td> <td>ation fi</td> <td>rom sin</td> <td>nple to</td> <td>o six az</td> <td>kis robo</td> <td>ot.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	3	To pra	actice v	with the	e simu	ation fi	rom sin	nple to	o six az	kis robo	ot.					
On the successful completion of the course, students will be able to CO1.Implement the programming and control of robots Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO2 PSO3 CO1 S M M L - - M - L L S M M CO2 S S S M M M - - M - L L S M M CO2 S S S M M M - - M </td <td>COUR</td> <td>RSE OU</td> <td>JTCO</td> <td>MES</td> <td></td>	COUR	RSE OU	JTCO	MES													
CO1.Implement the programming and control of robots Apply CO2.Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03 CO2 S M L L L L S M M PO1 <th colspan="6</td> <td>On the</td> <td>succes</td> <td>sful co</td> <td>mpleti</td> <td>on of t</td> <td>he cour</td> <td>se, stuc</td> <td>dents v</td> <td>vill be</td> <td>able to</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	On the	succes	sful co	mpleti	on of t	he cour	se, stuc	dents v	vill be	able to							
CO2. Predict the Path and trajectory planning for given environment Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M L - - - M - L L L S M M CO2 S S S M M M - - M - L L L S M M CO2 S S S M M M - - M - M M M S M M Itel is a different types of robots based on configuration and application. Situity of d	CO1.In	npleme	nt the	progra	mming	and co	ontrol o	of robo	ts						Appl	у	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S M M L - - M - L L S M M CO2 S S S M M M - - M - L L S M M CO2 S S S M M - - M - L L L S M M CO2 S S M M M - - M - L	CO2.P	redict t	he Path	n and the	rajecto	ry plani	ning for	r giver	n envir	onmen	t				Appl	у	
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M L - - M - L L S M M CO2 S S S M M M - - M - L L L S M M CO2 S S S M M M - - M - M M M S M M M - - M - M	MAPP	PING V	VITH .	PROG	RAM	ME OU	JTCO	MES A	AND I	PROG	RAMMI	E SPEC	IFIC C	OUTCO	OMES		
CO1 S M M M L - - M - L L S M M CO2 S S S M M M - - M - L L S M M CO2 S S S M M M - - M - M M S M M S- Strong; M-Medium; L-Low - - M - M M S M M 1) Study of different types of robots based on configuration and application. 2 Study of components of robots with drive system and end effectors. - - - M M S M M 3) Study of components of robots with drive system and end effectors. - - - - - - - - - - - - - M M M M M - - - M M M M - - M M	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3	
CO1 S M M M L - - M - L L S M M CO2 S S S M M M - - M - L L S M M CO2 S S S M M M - - M - M M S M M S- Strong; M-Medium; L-Low List of Experiments - - M - - M M S M M 2) Study of different type of links and joints used in robots - - M - - M M S M M 2) Study of components of robots with drive system and end effectors. - - - - - M M M - - - M M M M M M - - M M M M M M M M M M M	COD	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502		
CO2 S S M M M - - M - M M S M M S- Strong; M-Medium; L-Low List of Experiments 1) Study of different types of robots based on configuration and application. 2) Study of different type of links and joints used in robots 3) Study of components of robots with drive system and end effectors. 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	CO1	S	М	М	М	L	-	-	-	М	-	L	L	S	M	М	
S- Strong; M-Medium; L-Low List of Experiments 1) Study of different types of robots based on configuration and application. 2) Study of different type of links and joints used in robots 3) Study of components of robots with drive system and end effectors. 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	CO2	S	S	S	Μ	М	М	-	-	М	-	М	М	S	М	М	
S- Strong; M-Medium; L-Low List of Experiments 1) Study of different types of robots based on configuration and application. 2) Study of different type of links and joints used in robots 3) Study of components of robots with drive system and end effectors. 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	0.0		N 11														
List of Experiments 1) Study of different types of robots based on configuration and application. 2) Study of different type of links and joints used in robots 3) Study of components of robots with drive system and end effectors. 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	S- Stro	$\frac{\text{ong; M-}}{\text{C}}$		m; L-L	LOW												
 Study of different types of robots based on configuration and application. Study of different type of links and joints used in robots Study of components of robots with drive system and end effectors. Simulation of Forward and Inverse Kinematics using Robo Analyzer. Simulation of Workspace Analysis of a 6 axis robot. Forward and inverse kinematics using QBot 2 Verification of transformation (Position and orientation) with respect to gripper and world coordinate system Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	List of	Exper	iment	5													
 2) Study of different type of links and joints used in robots 3) Study of components of robots with drive system and end effectors. 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	1)	Study	of diff	erent ty	vnes of	robots	based	on cor	nfigura	tion an	d applic:	ation.					
 3) Study of components of robots with drive system and end effectors. 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S. No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	$\frac{1}{2}$	Study	of diff	erent ty	vpe of]	links ar	nd ioint	s used	in rob	ots	a appne						
 4) Simulation of Forward and Inverse Kinematics using Robo Analyzer. 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE	3)	Study	of com	ponen	ts of ro	bots w	ith driv	ve syste	em and	l end et	ffectors.						
 5) Simulation of Workspace Analysis of a 6 axis robot. 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	4)	Simula	ation o	f Forw	ard and	l Invers	se Kine	matics	s using	Robo	Analyze	r.					
 6) Forward and inverse kinematics using QBot 2 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	5)	Simula	ation o	f Work	space	Analys	is of a (6 axis	robot.		5						
 7) Verification of transformation (Position and orientation) with respect to gripper and world coordinate system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in 	6)	Forwa	rd and	invers	e kiner	natics u	ising Q	Bot 2									
system 8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	7)	V) Verification of transformation (Position and orientation) with respect to gripper and world coordinate															
8) Estimation of accuracy, repeatability and resolution. COURSE DESIGNERS S.No Name of The Faculty Designation Department Email.ID 1 Dr. L. K. Hema Professor & Head ECE hemalk@avit.ac.in 2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in		system															
COURSE DESIGNERSS.NoName of The FacultyDesignationDepartmentEmail.ID1Dr. L. K. HemaProfessor & HeadECEhemalk@avit.ac.in2Dr.P.M.MuraliAssociate ProfessorECEmuralipm@vmkvec.edu.in	8)	Estima	ation of	f accur	acy, re	peatabi	lity and	d resol	ution.								
S.NoName of The FacultyDesignationDepartmentEmail.ID1Dr. L. K. HemaProfessor & HeadECEhemalk@avit.ac.in2Dr.P.M.MuraliAssociate ProfessorECEmuralipm@vmkvec.edu.in	COUR	RSE DE	SIGN	ERS													
1Dr. L. K. HemaProfessor & HeadECEhemalk@avit.ac.in2Dr.P.M.MuraliAssociate ProfessorECEmuralipm@vmkvec.edu.in	S.No	Name	of The	e Facul	ty 1	Designa	ation		Γ	Departm	nent	En	nail.ID				
2 Dr.P.M.Murali Associate Professor ECE muralipm@vmkvec.edu.in	1	Dr. L.	K. He	ma]	Professo	or & H	ead	E	ĊĒ		her	nalk@a	avit.ac.	in		
	2	Dr.P.M	I.Mural	i	1	Associa	te Prof	essor	E	CE		mu	ralipm@	vmkve	c.edu.in		

	Category L P Credit														
17MECC93 HYDRAULICS AND										uregoi	. 5	-	-		cuit
1,1,	1200	10	PNE	UMA	TIC	SYST	'EM I	LAB		CC	0) 0	4		2
Prea Tog circ	nble gain kr uits us	nowle sed in	dge al indus	oout c try	ompo	nents	used	in flui	id pow	er syst	tem and	l famil	iarize v	arious	
Prere	Prerequisite – NIL Course Objective														
Cour	se Obj	jective	•												
1	To im	ipart p	ractice	in hy	draulic	and p	neuma	atic ci	rcuit						
2	То ех	xperin	nent w	vith va	arious	hydr	aulic	circui	ts des	igned f	for diff	erent r	needs.		
3	To uti	lize th	e skill	s to de	esign a	ı circu	it for a	any ap	plicati	on					
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
CO1. Construct a hydraulic system for the specific need in the industries. Apply															
CO2.	De	evelop	a pne	eumat	ic sys	tem fo	or the	speci	fic ne	ed in tl	ne indu	stries.	App	ly	
CO3.	Ide sys	entify stem t	the po o auto	ossibil omate	lities of the pr	of autorocess	omatio ses.	on and	d deve	elop a s	uitable	2	Арр	ly	
Map	oing w	ith Pr	ogran	ıme O	utcon	nes an	d Prog	grami	me Spo	ecific O	utcom	es			
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
COI	1 S	2 S	3 S	4 M	5 M	6 -	/	8 -	9 M	0	-	2 L	I M	L	5
	S	S	S	М	М	_	-	_	М	_	_	L	М	L	
CO2	S	S	M	М	L	-	-	_	М	-	-	М	М	L	
S- St	rong. I	M-Mo	dium	I J o	**7										
61			uiuiii,	L-L0	vv										
LIST	OF E	5: XPEF	RIME	NTS:											
1. Stu 2. Stu	udy of udv of	Spee Sequ	d Con encins	trol C g Circ	ircuit uit on	on H Hydi	ydraul aulic	lic Tra Train	ainer er						

- 3. Study of Synchronizing Circuit on Hydraulic Trainer
- 4. Study of Regenerative Circuit on Hydraulic Trainer
- 5. Study of Counterbalancing Circuit on Hydraulic Trainer
- 6. Study of ISO/GIS Fluid Power Symbols
- 7. Design and assembly of hydraulic / pneumatic circuit
- 8. Visit Report for Demonstration of Fluid Power Circuit

Text Boo	Text Book											
HYDRAULICS AND PNEUMATIC SYSTEM LAB Manual												
Course I	Course Designers											
S.No	No Faculty Name Designation Department/ College Email id											
1	Dr. S.Natarajan	Asso.Prof	Mechanical	natarajans@vmkvec.edu.in								
2	A.Elanthiraiyan	AP-II	Mechanical	aelanthirayan@avit.ac.in								

17MTEC01	DESIGN OF MECHATRONICS SYSTEM	Category	L	Т	Р	Credit
		EC(PS)	3	0	0	3

PREAMBLE

A Mechatronic system design is a design process that is characterized by synergistic integration of mechanisms, sensors, actuators and control to perform complex tasks in a metaphysical environment. An important characteristic of Mechatronic devices and systems is their built-in intelligence, which results through a combination of precision mechanical and electrical engineering and real-time programming integrated with the design process. Mechatronics system design makes possible to understand the basic design process involved in mechatronics, selection of sensors and actuators, the interface issues and communication problems.

PREREQUISITE

NIL

COUR	RSE OI	BJECT	FIVES												
1	To familiarize with the design parameters of Mechatronics system.														
2	To ac	quire k	nowle	dge in	port co	mpone	ents use	ed in sy	/stem r	nodeling	ς.				
3	To kn	low ab	out Ge	neraliz	ed Mec	chatron	ics De	sign Pr	ocess.						
4	To un	Idersta	nd the	role of	piezo e	electric	senso	rs and a	actuato	rs in va	rious ap	plication	S		
COUR	SE O	UTCO	MES												
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to)					
CO1. I	Discuss	about	Model	lling of	Mech	atronic	es Syst	em				Understa	ind		
CO2.E	xplain	the des	sign pro	ocess i	nvolve	d in me	echatro	onics				Understa	nd		
CO3. S	Select t	he sens	sor and	Actua	tor for	a Mecl	hatroni	c appli	cation			Apply			
CO4 D	evelop	a Mec	hatron	ic proc	luct for	the gi	ven pro	oblem				Apply			
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPE	CIFIC O	UTCON	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	Μ	-	-	I	-	-	-	-	L	Μ	-	-
CO2	S	Μ	Μ	L	-	-	-	-	-	-	-	L	S	Μ	-
CO3	S M M L S M M														
CO4	S S M M M M - M M S M M														
S- Stro	S- Strong; M-Medium; L-Low														
SYLL	ABUS														

Introduction to Mechatronic System Design:

Key elements – Mechatronics Design process –Design Parameters – Traditional and Mechatronics designs – Advanced approaches in Mechatronics - Industrial design and ergonomics, safety.

System Modelling by Bond Graphs:

Introduction-model categories-fields of application, generalized variables in bond graph- Power variables – Energy variables, Basic components in Bond graph-1 Port components- 1 Port Resistor- 1 Port Capacitor – 1 Port Inductor, 2 Port components- Transformer- Gyrator, 3 Port Components – 0 Junction, 1 Junction, Model development-Design examples.

Generalized Mechatronics Design Process:

Recognition of the Need, Conceptual Design and Functional Specification, First principle Modular Mathematical Modeling, Sensor and Actuator Selection, Drivers for Actuators, Control System Design, Design Optimization, Prototyping, Hardware-in-the-loop Simulation, Deployment/Life Cycle, Deployment of Embedded Software, Life Cycle Optimization

Design of cantilever beam vibration control system based on piezo sensors and actuators :

Introduction, Modeling of the Cantilever Beam and PZT Actuator (Modeling of the Beam, Modeling of the PZT Actuator, Modeling of the Sensor), Beam Experimental Setup (properties and dimensions of the beam, dimensions and bonding techniques), instrumental setup (Charge amplifier, Voltage amplifier, Data Acquisition), Controller and Software (Development of the PID VI)

Text Book

- 1. Shruva Das, "Mechatronic Modelling and Simulation Using Bond Graphs" CRC Press, 2009.
- 2. W. Bolton, "Mechatronics Electronic control systems in Mechanical & Electrical Engineering", Pearson Education Ltd., 2003.
- 3. Shetty and Kolk, "Mechatronics System Design", CENGAGE Learning, India, second edition, 2011.

Reference Books

1. Bishop, Robert H, "Mechatronics Hand book", CRC Press, 2002.

2. Kenji Uchino and Jayne R. Giniewicz, "Mechatronics" publication: Marcel Dekker, Inc.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in

17FFFC07	INTELLIGENT CONTROLLERS	Category	L	Т	Р	Credit
TTELECOT		EC	3	0	0	3

PREAMBLE

Intelligent control achieves automation via the emulation of biological intelligence. It either seeks to replace a human who performs a control task (e.g., a chemical process operator) or it borrows ideas from how biological systems solve problems and applies them to the solution of control problems. This course provides an overview of several techniques used for intelligent control and discusses challenging industrial application domains where these methods may provide particularly useful solutions. The subject begins with a brief overview of the main areas in intelligent control, which are fuzzy control and neural networks

PREREQUISITE

17EECC08 Control systems

COURS	E OBJ	ECTI	VES												
1	Analyze the performance of the controller using fuzzy logic system and neural network for armature controlled DC motor seed control														
2	Analyze the performance of neural network and fuzzy logic systemfor system identification														
3	Analyze the reason for better generalization capability of SVM as compared to Neural network														
4	Anal	yze the	e perfo	rmance	e of fu	zzy bas	ed gain	n sched	luling o	control					
COURS	E OU'	ГСОМ	IES												
On the su	iccessf	ul con	npletio	n of the	e cours	e, stud	ents w	ill be al	ble to						
CO1	Expla and b	ain the basics of	e role of fuzz	of Art y and r	ificial neural s	intelli system	gence s.	in ind	ustrial	control	lers	Underst	and		
CO2	Expla	ain the	model	ing of	a conti	roller u	sing fu	izzy an	d neura	al syster	ns	Underst	and		
CO3	Appl	y fuzz	y and r	eural s	system	s for sy	vstem i	dentific	cation			Apply			
CO4	Analyze the performance of the controllers based on fuzzy and neural for industrial applications.Analyze														
CO5	Apply genetic algorithm to Optimal control problems using Simulation Tool BoxApply														
MAPPIN	NG W	TH P	ROGE	RAMM	IE OU	TCON	AES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	Μ	-	-	-	-	-	-	-	-	-	Μ	-	-
CO2	S	Μ	S	М	Μ	-	-	-	-	-	-	-	-	-	L

CO3	S	S	S	S	S	М	-	М	-	_	_	_	S	-	-
CO4	S	S	S	S	S	S	Μ	-	S	-	-	-	S	-	-
CO5	S	L	S	L	S	-	-	-	L	L	_	_	Μ	S	_

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI approach. Knowledge representation. Expert systems.

ARTIFICIAL NEURAL NETWORKS

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron. Learning and Training the neural network. Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations. Hopfield network, Self-organizing network and Recurrent network. Neural Network based controller

GENETIC ALGORITHM

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems.

FUZZY LOGIC SYSTEM

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Self-organizing fuzzy logic control. Fuzzy logic control for nonlinear time-delay system.

APPLICATIONS

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox. Stability analysis of Neural-Network interconnection systems. Implementation of fuzzy logic controller using Matlab fuzzy-logic toolbox. Stability analysis of fuzzy control systems.

TEXT BOOKS

1. Padhy.N.P. Artificial Intelligence and Intelligent System, Oxford University Press. (2005),

2. KOSKO, B. "Neural Networks And Fuzzy Systems", Prentice-Hall of India Pvt. Ltd., 1994.

3. Siddique, Nazmul, "Intelligent Control", Springer 2014

REFERENCES:

1. Jacek.M.Zurada, "Introduction to Artificial Neural Systems", Jaico PublishingHouse, 1999.

KLIR G.J. & FOLGER T.A. "Fuzzy sets, uncertainty and Information", Prentice-Hall of India Pvt. Ltd., 1993.
 Zimmerman H.J. "Fuzzy set theory-and its Applications"-Kluwer Academic

Publishers, 1994.

4. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.

5. Goldberg D.E. (1989) Genetic algorithms in Search, Optimization and Machine

learning, Addison Wesley.

COURD							
S.No.	Name of the Faculty	Designation	Department	e-Mail ID			
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in			
2.	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in			

17FFFC	53		PRIN	CIDI F	'S OF				NTRO	NT	Catego	ory I	T		P C	Credit
	-23					AUIU					EC	3	0		0	3
PREAM	BLE															
To provide the basics and fundamental concepts of automatic control systems. This will permit an engineer to exploit time domain and frequency domain tools to design and study automatic linear control systems.																
exploit time domain and frequency domain tools to design and study automatic linear control systems PREREOUISITE																
	1. NIL															
COURS	E OBJ	ECTI	VES													
1	To p	rovide	a clea	view	of oper	ationa	l chara	cteristi	cs of se	ensors fo	or its use	e in co	ontrol	syst	em	
2	To a	ccustor	m with	differe	ent ind	ustrial	control	l syster	n							
3	To in	npart k	knowle	dge of	pneum	natic ar	nd hydr	aulic c	ontrol	actions						
4	То а	cquire	and ap	ply kn	owledg	ge of st	ability	of con	trol sys	stem						
COURS	E OUI	ГСОМ	IES													
On the su	uccessf	ul com	pletio	n of the	e cours	e, stud	ents wi	ill be al	ble to							
CO1	Unde contr	rstand ol syst	and ap em	oply the	e know	ledge	of diffe	erent ty	pe of s	ensors i	n (Under	stand			
CO2	Deve system	lop and ms, the	alogy f ermal s	for spri ystem,	ng-ma flow s	ss dam ystem	ping sy	/stem v	with ele	ectrical	1	Apply				
CO3	Unde and h	rstand ydraul	and ap	ply the	e know ions	ledge	of diffe	erent ty	pes of	pneuma	tic I	Under	stand			
CO4	Understand and apply the knowledge of stability of control system Understand															
MAPPI	NG WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PS	D1	PSO2	PSO3
CO1	S	-	L	- -	-	- -	-	L	-	-	-	M	N	[-	-
CO2	- <u>S</u> <u>M</u> <u>L</u> <u>M</u> <u>L</u> - <u>-</u> <u>-</u> <u>M</u> <u>S</u> <u>-</u> <u>M</u> <u>-</u>															
C03	د -	IVI S	L M	-	- M	-	- T	-	- 5	-	-	3	<u> </u>		-	-
S- Strong	- 1. M_M	edium		-	141	-			L L	-	-	-	0		-	-
5 Strolly	, 141 -1 4 1		ı, L - L 0	• • •												

Unit 1

Introduction Architecture industrial automation system, development trends in industrial automation, classification of existing systems, and functionality of industrial automation system. Relay and contactor logic, AC and DC relays and their role for load control. Power and Auxiliary contactors and their usage for load control.

Unit 2

Industrial Measurement System Characteristics Sensors and control logic, control using potential free output sensors Control using PO, PC, NO, NC type output sensor, 2W(2wire), 3W(3 wire), 4W(4wire) and 4WC sensors, Linear potentiometer Timer hardware architecture, Controlling industrial system using Controlling industrial system using counters .Temperature Measurement, Pressure, Force timers and Torque Sensors, Motion Sensing, Flow Measurement, Signal Conditioning, Data Acquisition Systems. Unit 3

Automatic Control Introduction, P-I-D Control, manual and auto PID Control Tuning, Feed forward Control Ratio Control, Time Delay Systems and Inverse Response Systems, Special Control Structures. Temperature controller hardware architecture.

Unit 4

PLC Introduction to Sequence Control, PLC, RLL (Relay Ladder Logic), Sequence Control. Scan Cycle, Simple RLL Programs, Sequence Control. More RLL Elements, RL L Syntax, A Structured Design Approach to Sequence, PLC Hardware Environment, Introduction To CNC Machines, Contour generation and Motion Control, Allen Bradley PLC and SIEMEN PLC.

Unit 5

Industrial Control Basics of hydraulics, Hydraulic components their functions and symbols Hydraulic actuators, Pumps and its operation, pump control, Hydraulic valves (Direction control, pressure and flow control), special valves, pressure gauges and switches, hydraulic logic circuits, Hydraulic Control System, Multiple pressure and speed operations, Industrial Hydraulic Circuit, Pneumatic systems and components Pneumatic Control Systems, compressor operation and control, air treatment.

Text books :

- 1. Butterworth-Heinemann , Principles of Automatic control, , 2nd edition 1975
- 2. S N Verma Automatic Control Systems Khanna Publishers (2002)
- 3. Farid Golnaraghi, Benjamin C. Kuo, Automatic Control Systems, Wiley; Ninth edition (2014)

References:

1. Lingefeng Wang, Kay Chen Tan, "Modern Industrial Automation and Software Design" John Wiley & Sons Inc.

2. K. L.S. Sharma, "Overview of Industrial Process Automation", Elsevier

3. Kok Kiong "Drives and Control for Industrial Automation", Springer

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in

COUDER DEGLENDES
17ECEC25	MICRO ELECTRO MECHANICAL	Category	L	Т	Р	Credit
	SYSTEMS	EC(PS)	3	0	0	3

PREAMBLE

Micro Electro Mechanical System (MEMS) contains components of sizes less than 1 millimeter. MEMS achieve some engineering functions by electro mechanical or electro chemical means. In general a sensor, an actuator and a signal transduction unit forms the MEMS device. Automobile, Aerospace, Health care are some of the areas where MEMS found applications. Natural science, Mechanical, Electrical, Chemical, Materials and Industrial Engineering are the disciplines involved in design, Manufacture and Packaging of MEMS devices. This course provides a comprehensive treatment with synergetic integration of wide spectrum of discipline in science and engineering to cater the multidisciplinary nature of Mechatronics

PREREQUISITE -															
COURSE OBJECTIVES															
1	1 To gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques														
2	This enables them to design, analysis, fabrication and testing the MEMS based components.														
3	Introduce the students various opportunities in the emerging field of MEMS.														
COUR	COURSE OUTCOMES														
On the	succes	ssful co	mpleti	on of t	he cou	rse, stud	ents will b	e able to							
CO1. 5	Summa	rize the	e work	ing pri	inciples	s of ME	MS and M	licrosyste	ms				Unders	tand	
CO2. S	CO2. Solve problems in scaling laws applicable to miniaturization Apply														
CO3. I	CO3. Explain Materials for MEMS and Microsystems Apply														
CO4. S	Select r	nicro-s	ystem	fabrica	tion an	d Micro	o-manufac	turing pr	ocess for	r a giver	applica	tion	Apply		
CO5. E	Explain	the pa	ckagin	g aspec	cts of N	/licro Sy	stem						Apply		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCON	IES AND	PROGE	RAMMI	E SPEC	IFIC O	UTCON	AES		
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	-	-	-	-	-	-	-	L	S	М	-
CO2	S	М	М	М	Μ	-	-	-	-	-	-	L	S	М	М
CO3	S	М	М	-	-	-	-	-	-	-	-	L	S	М	-
CO4	S	S	Μ	Μ	L	-	_	-	-	-	-	L	S	М	Μ
CO5	S L L L S														
S- Stro	nσ· M.	Medin	m∙ I ₋I	ow											

Overview of MEMS and Micro Systems: MEMS and Microsystems, products, Evolution of micro-fabrication, Micro system and Microelectronics, The multidisciplinary nature of MEMS, Miniaturization, applications of micro systems in automotive, health care, aerospace, and telecommunication fields.

Working Principles of Microsystems: Introduction, micro sensors: Acoustic waves, optical, chemical, pressure, thermal, biomedical and bio sensors. Micro actuation: using thermal forces, shape memory alloys, piezoelectric crystals and electrostatics forces. MEMS with micro actuators: micro grippers, micro motors, micro valves, micro pumps, micro accelerometer

Scaling law in miniaturization: Introduction to scaling, scaling in rigid body dynamics, electrostatic forces, electromagnetic forces, electricity, fluid mechanics and heat transfer.

Materials for MEMS and Microsystems: Introduction, substrate and wafers, active substrate materials, silicon, silicon compounds, silicon piezoresistors, polymers and packaging materials.

Microsystem fabrication process: Introduction, Photolithography, ion implantation, diffusion, oxidation, chemical vapour deposition, physical vapour deposition (sputtering), Deposition by epitaxy, wet and plasma etching.

Overview of Micro manufacturing: Introduction, bulk micromachining, surface micromachining, the LIGA process. Microsystem packaging: Introduction, Microelectronics packaging, Microsystem packaging, Interfaces in microsystem packaging, Essential packaging technologies, Pressure sensor packaging

TEXTBOOKS

1. Tai – Ran Hsu, "MEMS and Microsystem: Design and Manufacture", Tata McGraw Hill, First Edition, 2002.

REFERENCE BOOKS

- 1. G.K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Athrae "Micro and Smart System", Wiley India Pvt Ltd, First edition, 2010.
- 2. Chang Liu, "Foundation of MEMS", 2nd Edition, Pearson education, 2012.
- 3. Gad El Hak (Editor), "The MEMS Hand Book", Three volume set, 2nd revised Edition.CRC press, 2005.

0001												
S.No.	Name of the	Designation	Department	Mail ID								
	Faculty											
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in								
2	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in								

		Ca										/ L	Т	Р	Credit
17ECE	EC26				A	VION	ICS				EC(PS)	3	0	0	3
PREA	MBLE	2												•	
The aim	of the s	subject i	s to pro	vide kn	owledge	in airc	rafts avi	onics. 7	This sub	ject will p	provide the s	tudents a	ın in-de	pth	
knowled	lge aboi	it the av	vionics a	ind its a	rchitect	ure, Thi	s will al	so give	the deta	iled know	vledge abou	t navigat	ion		
systems															
PKERI															
COUR	RSE OBJECTIVES														
1	To De	evelop in	nterdisc	iplinary	Knowle	edge.									
2	To De	evelop s	kills on	Electro	nics.										
3	To st	udy on	interes	st for N	Iulti di	sciplin	ary Att	titude							
4	To E	nable a	ind Enł	nance l	ife for	learnin	g								
5	To fe	ature k	nowled	dge bas	sed on	various	s syster	n							
COUR	SE OU	U TCO	MES												
On the	succes	sful co	mpleti	on of tl	ne cour	se, stu	dents w	vill be a	able to						
CO1.	Expla	ain the b	asic coi	ncept an	d impoi	tance of	f avioni	cs.				Under	stand		
CO2.	Sumr	narize t	he basic	s and de	esign m	odern da	ata bene	fits.				Apply	,		
CO3.	Ident	ify the p	oroblem	&sugge	est suita	ble imp	lement o	on vario	ous syste	em.		Analy	ze		
CO4.	Desig	gn and N	Aodify t	he syste	em as pe	r the No	eeds					Analy	ze		
CO5.	Creat	e a new	system	with ad	lditional	advanc	e new f	eature.				Evalua	ate		
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGF	RAMMI	E SPECIF	IC OUT	ГСОМ	1ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	I PSO2	PSO3
CO1	М	М	-	-	-	-	-	-	_	-	-	-	S	-	М
CO2	М	М	-	-	-	-	-	-	-	-	-	-	S	S	М
CO3	S	М	М	-	-	-	-	-	-	-	-	М	S	S	М
CO4	S	S	М	-	-	-	-	-	-	-	-	М	S	S	М
CO5	S	S	Μ	-	-	-	-	-	-	-	-	М	S	S	M

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I INTRODUCTION TO AVIONICS

Need for avionics in civil and military aircraft and space systems – integrated avionics and weapon systems – typical avionics subsystems, design, technologies – Introduction to digital computer and memories.

UNIT II DIGITAL AVIONICS ARCHITECTURE

 $Avionics\ system\ architecture-data\ buses-MIL-STD-1553B-ARINC-420-ARINC-629.$

UNIT III FLIGHT DECKS AND COCKPITS

Control and display technologies: CRT, LED, LCD, EL and plasma panel – Touch screen – Direct voice input (DVI)– Civil and Military Cockpits: MFDS, HUD, MFK, HOTAS.

UNIT IV INTRODUCTION TO NAVIGATION SYSTEMS

Radio navigation – ADF, DME, VOR, LORAN, DECCA, OMEGA, ILS, MLS – Inertial Navigation Systems (INS) – Inertial sensors, INS block diagram – Satellite navigation systems – GPS.

UNIT V AIR DATA SYSTEMS AND AUTO PILOT

Air data quantities – Altitude, Air speed, Vertical speed, Mach Number, Total air temperature, Mach warning, Altitude warning – Auto pilot – Basic principles, Longitudinal and lateral auto pilot.

TEXTBOOK:-

- 1. Albert Helfrick. D, 'Principles of Avionics', Avionics communications Inc., 2004
- 2. Collinson, R.P.G, 'Introduction to Avionics', Chapman and Hall, 1996.

REFERENCE BOOKS:-

- 1. Middleton, D.H, 'Avionics Systems', Longman Scientific and Technical, Longman Group UK Ltd, England, 1989.
- 2. Spitzer, C.R. 'Digital Avionics Systems', Prentice Hall, Englewood Cliffs, N.J., USA1993.
- 3. Spitzer, C.R, 'The Avionics Handbook', CRC Press, 2000.
- 4. Pallet, E.H.J, 'Aircraft Instruments and Integrated Systems', Longman Scientific, 1992

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
2	Dr.P.M.Murali	Associate	ECE	muralipm@vmkvec.edu.in
		Professor		

17MESE10		DI	ESIGN	FOR	MAN	UFACTU	JRE	Ca	tegor	y]	L	Т	Р	Cr	edit	
				A	AND A	SSEM	BLY		E	C(SE)		3	0	0		3
Prea To st requi	To study how a design can be made suitable for various manufacturing and assembly process requirements.															
Prer NIL	equi	site														
Cou	rse C	Objec	ctive													
1	1 To understand the factors for Design for Manufacture															
2	Tol	To know about the basics of Form Design of casting and welding														
3	Tol	know	v aboi	it the	basics	s of Fo	orm desi	ign c	of for	ged ar	nd mac	chined	comp	onents		
4	Tos	study	v abou	ıt desi	gn fo	r asse	mbly									
5	To s guio	study deline	7 abou es	it the	variou	is asse	embly m	netho	ods a	nd pro	cesses	and d	esign	for asser	nbly	
Cou	rse C	Jutco	omes:	On t	he su	ccessf	ful comp	pleti	ion of	f the c	ourse	, stude	ents w	vill be at	le to	
CO1	• 1	Understand the factors to be considered for design and manufacturabilityUnderstand														
CO2	. v	Under weldi	rstand ng	l the r	equire	ement	s and de	esign	n cons	siderat	ion fo	r castii	ng &	Unde	erstand	
CO3	· n	Under nachi	rstand ining	l the r	equire	ement	s and de	esign	n cons	siderat	ion fo	r forgi	ng &	Unde	erstand	
CO4	· A	Apply assem	y the v ably n	variou nethoo	ls type ds	es of a	pproach	nes f	ollow	ved in	Desig	n for		App	У	
CO5	. tl	Analy he pr	ze the rocess	e vari	ous m	ethod	ls for ass	semt	oly pr	rocedu	re dep	ending	g on	App]	у	
Map	ping	g witl	h Pro	gram	me O	utcor	nes and	Pro	ogran	nme S	pecifi	c Outo	comes	5		
CO	1	PO1	PO2	PO3	PO4	PO5	PO6 P	07	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO1	-	S	L	-	-	-	_	-	-	-	-	-	-	L	-	-
CO2	2	S	S	L				-	-	-	-	-	-	L	-	-
CO3	3	S	L	М		S	_	-	-	-	-	-	-	L	-	-
CO4	ŀ	S	М	S	М	S	-	-	-	-	-	-	-	М	-	-
CO5	5	S	М	S	S	М	-	-	-	-	-	-	-	L	-	-
S- Stı	S- Strong; M-Medium; L-Low															

INTRODUCTION TO DESIGN FOR MANUFACTURE

Qualities of a designer - Systematic working plan - Factors influencing choice of materials - Manufacturing methods. Process capability. Tolerances - Relevant to manufacturing, assembly. Tolerance stack - effects on assembly- Methods of eliminating tolerance stack.

FORM DESIGN - CASTING AND WELDING

Influence of loading, materials, production methods on form design. Casting considerations - Requirements and rules. Welding considerations - Requirements and rules. Redesign of components for castings. Redesign of components for welding. Case studies.

FORM DESIGN - FORGING AND MACHINING

Forging considerations - Requirements and rules. Choice between casting, forging and welding. Machining considerations - Requirements and rules. Redesign of components for forging. Redesign of components for machining. Case studies.

INTRODUCTION TO DESIGN FOR ASSEMBLY

Distinction between assembly methods and processes. Factors determining assembly methods and processes. Design factors independent of methods and processes. Design factors dependent on methods. Design factors dependent on processes.

DESIGN FOR ASSEMBLY METHODS

Approaches to design for assembly - Approaches based on design principles and rules -Qualitativeevaluation procedures, knowledge based approach, Computer aided DFA methods. Assemblability measures. Boothroyd Dewhurst DFA method, Redesign of a simple product. Case studies.

Text Books

1	Alan Redford and chal, Design for Assembly-Principles and Procedures, McGraw Hill International Europe, London, 1994.
2	Swift. K.G., Knowledge Based Design for Manufacture, Kogan Page Ltd., 1987

Reference Books

1 James G. Bralla, Hand Book of Product Design for Manufacturing, McGraw Hill Co., 1986

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.PRAVEEN	ASST. PROF –GR-II	Mech / AVIT	praveen@avit.ac.in
2	R.JAYARAMAN	ASSO. PROF –	Mech / VMKVEC	jayaramanr@vmkvec.edu.in

17FC(CC24	INT	INTRODUCTION TO VLS				FSIGN	J	Categor	У)	Credi	t	
1720	CC27	11 1 1	RODU	CHOI	10	LOID	Loioi	È E	EC (PS))	3	0 ()	3		
PREA	MBLE	E								·		1 1				
In the tens and develop	In the recent times fabrication technology is revolutionized and especially LSI has become so dense that on a single tens and thousands of transistors are placed. Thus integrated circuits have become integrated systems and development of fabrication technology VLSI plays very important role.															
PRER	PRERQUISITE															
	17ECCC05 Digital Logic Circuit & Design															
COUR	URSE OBJECTIVES															
1	To rea	alize va	rious M	OS cire	cuits lik	es NM	OS, PM	OS and	l CMOS	S.						
2	To familiarize with Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology.															
3	3 To gain knowledge in the transistor circuit level design in design of CMOS Analog IC.															
COUR	SE O	UTCO	MES													
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to)						
CO1.E	lucidat	te the C	CMOS	proces	s techn	ology.							U	nderst	and	
CO2.D	esign s	everal b	basic Cl	MOS C	ombina	tional c	ircuits.							Appl	у	
CO3. I	Develo	p the b	asic CN	MOS S	equent	ial circ	uits.							Appl	у	
CO4. A	Analyz	e Arith	metic l	Buildin	g Bloc	ks							1	Analy	ze	
CO5. I	Describ	be the t	echniqu	ues of o	chip de	sign us	sing pro	ogramı	mable c	levices.				Appl	у	
MAPP	PING V	WITH	PROG	RAM	ME O	UTCO	MES A	AND I	PROG	RAMM	E SPEC	CIFIC	OUTCO	OMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 F	PSO2	PSO
CO1	S	Μ	-	-	Μ	-	-	-	М	-	-	L	S		М	-
CO2	S	S	S	М	Μ	-	-	-	Μ	-	-	L	S		S	-
CO3	S	S	S	Μ	Μ	-	-	-	Μ	-	-	L	S		М	-
CO4	S	M	Μ	Μ	Μ	-	-	-	Μ	-	-	L	S		S	N
CO5	S	S	S	S	Μ	-	-	-	Μ	-	-	L	S		М	N
S- Stro	S- Strong; M-Medium; L-Low															

Unit I MOS TRANSISTOR PRINCIPLE

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits a device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagra Layout diagrams.

Unit II COMBINATIONAL LOGIC CIRCUITS

Examples of Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static a

dynamic CMOS design, Power dissipation – Low power design principles.

Unit III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and mem control circuits, Low power memory circuits, Synchronous and Asynchronous design.

Unit IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed add accumulators, Multipliers, dividers, Barrel shifters, and speed and area tradeoff.

UNIT - V IMPLEMENTATION STRATEGIES

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPG interconnect routing procedures.

Text Books

- 1. Jan Rabaey, AnanthaChandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective", Sec. Edition, Prentice Hall of India, 2003.
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997

REFERENCES:

- 1. N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley 1993.
- 2. R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hal India 2005.
- 3. A.Pucknell, Kamran Eshraghian, "BASIC VLSI Design", Third Edition, Prentice Hall of India, 2007.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. L. K. Hema	Professor & Head	ECE	hemalk@avit.ac.in								
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in								
3	Mr.G.SureshKumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in								

17E	CCC15		A	NALO)G &]	DIGIT	AL		Ca	tegory	L	Т	Р	Crea	lit
				COM	NUNI		DN			CC	3	0	0	3	
PRE	AMBL	E													
This	course p	rovide	s a tho	rough i	ntrodu	ction to	the b	asic pri	inciples	s of Ana	log and	Digita	l Comm	unication	s. It
also	deals wit	h Ana	log and	l Digita	al Mod	ulation	techni	ques, C	Commi	inication	n Transı	nitter a	& Recei	ver desigr	1,
Base	Baseband and Bandpass Communication Techniques, Noise Analysis and Multiplexing techniques.														
PRE	PKEKEQUISITE - NIL														
COL	COURSE OBJECTIVES														
	UUUKSE UBJEUTIVES														
1	1 To Understand the basic elements of analog communication system														
-	10 0110									<i>J</i> = = = = = = = = = = = = = = = = = = =					
2	To learn	the ba	sic cor	ncepts l	behind	the tra	nsmiss	ion and	d recep	tion of A	Angle M	Iodula	ion		
3	To impa	rt the l	knowle	dge ab	out An	alog to) Digita	al Tran	sition S	Systems	&Infor	mation	Theory		
4	To Anal	yze &	design	the per	rforma	nce of	variou	s digita	l carrie	er transn	nission.				
5	To Appl	y the k	nowle	dge of	Digital	Comn	nunicat	tion cir	cuits in	n variou	s fields.				
COU	IRSE O	UTCO	MES												
On tl	ne succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)					
C01	Interpre	t the va	arious A	Analog	comm	unicati	ion sys	tems.				Unders	tand		
CO2	Illustrat	e the p	rinciple	e and o	peratio	n behi	nd vari	ous M	odulate	ors,		Apply			
<u> </u>	Demodi	ilators	In Ana	alog co	mmuni	cations	5	M.	- 4 1			A 1			
003	. Apply (tion I	it coull	ng theo	bry to e	stimate	e Entro	py, Mi	ituai		,	Арріу			
CO4	Demons	trate th	norma	cent of	variou	e digita	l carrie	er mod	ulation	and		Apply			
04	determir	ne their	error i	nrohah ²	ility	suigita			ulation	anu		дрргу			
CO5	Analyze	the m	aior cla	assifica	tions o	of sprea	d spec	trum te	echnia	ies		Analyz	e		
						i spiee									
MAI	PPING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO	I PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	_	_	L	M	_	-
CO2	S	М	М	-	М	-	-	-	-	-	-	М	S	М	-
CO3	S	М	М	М	-	-	-	-	-	-	-	Μ	S	М	-
CO4	S	S	М	М	-	-	-	-	-	-	-	М	S	М	-
CO5	S	М	М	М	L	-	-	-	-	-	-	L	S	-	М
S-St	rong; M	Mediu	ım; L-I	LOW											
SYL	LABUS														

Analog Communication Systems

Principles of Amplitude Modulation – AM Modulators- Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM Demodulators, AM transmitters-Low level & High level Transmitters, AM Receivers – TRF, Super Heterodyne Receiver, Double conversion AM receivers.

Angle Modulation: Transmission And Reception

Angle Modulation - FM and PM, Modulation Index, Frequency Modulators and Demodulators, Phase Modulators, FM transmitters- Direct & Indirect transmitters, Angle Modulation Vs Amplitude Modulation, FM Receivers, Frequency Vs Phase modulation.

Analog to Digital Transition Systems & Information Theory

Pulse Amplitude Modulation, Pulse Position Modulation, Pulse Code Modulation, Sampling Rate, DPCM, Delta Modulation, Time Division Multiplexing, Information Theory- Uncertainty, Information and entropy, source coding theorem, Discrete Memoryless channels, Mutual Information, Channel capacity, Channel coding theorem.

Digital Transmission

Pulse Transmission – Inter Symbol Interference, Eye pattern, Digital carrier Modulation-Binary Amplitude Shift Keying, Binary Frequency Shift Keying, Binary Phase Shift Keying, QPSK, bit and baud rate, BER Analysis

Spread Spectrum Modulation

Pseudo noise sequences, Direct sequence Spread Spectrum with coherent BPSK, Frequency hop spread spectrum modulation, Multiple Access Techniques – Wireless Communication, TDMA and FDMA

TEXT BOOK:

1. Simon Haykin and Michael Moher, "Communication systems" John Wiley & Sons, Fifth Edition, 2016

REFERENCE BOOKS:

1. Simon Haykin and Michael Moher, "An Introduction to Analog and Digital Communications", John Wiley & Sons, second Edition, 2006.

2. Martin S.Roden, "Analog and Digital Communication System", 3rd Edition, PHI, 2002

3. Wayne Tomasi, "Electronic Communication Systems: Fundamentals Through Advanced", Pearson Education, 2001.

4. B. Carlson, "Introduction to Communication systems", 3rd Edition, McGraw Hill, 1989

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in										
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in										
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in										

17EEPI03 VIRTUAL INSTRUMENTATION L T									Т	Р	Credit				
			v	INTOA		INUM				Р	I	3	0	0	3
PREA	MBLE	1													
A virtu cost-eff instrum	al instru fective l nents.	iment c hardwa	consists re such	of an ir as plug	ndustry- -in boar	-standar rds, and	rd comp l driver	outer or softwa	worksta re, whic	ation equ h togeth	iipped w er perfor	ith power m the fur	rful appl nctions o	ication so of tradition	oftware, nal
PRER	EQUIS	ITE-N	IL												
COUR	SE OB	JECTI	IVES												
1	Revie	w back	ground	informa	ation re	quired	for stud	lying vi	rtual ins	trumenta	ation.				
2	Study the basic building blocks of DAQ in virtual instrumentation.														
3	Study	the var	rious teo	chnique	s of inte	erfacing	g of exte	ernal in	strumen	nts of PC	•				
4	Study	the var	rious gra	aphical	prograi	nming	environ	iments i	n virtua	ıl instrun	nentatior	1			
5	Study	a few a	applicat	ions in	virtual	instrum	entatio	n							
COUR	SE OU	TCOM	1ES												
On th	ne succe	essful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1: F	Review 1	he stud	ly of sig	gnal tim	e doma	in and a	AC/DC	conver	ters.					Remem	ber
CO2: 1	The cond	cepts of	operat	ion of v	irtual ii	nstrume	entation	and cla	issificati	ion.				Underst	and
CO3:C	lassify a	and des	ign of i	nterfaci	ng of e	xternal	instrum	nents						Evaluat	or
CO4: A	Apply th	e conce	epts of g	graphica	al progr	ammin	g.							Apply	
CO5:	Analyze	the to	ools an	d simp	le appl	ications	s in sy	stems	for Fou	rier trar	nsform I	Power sp	ectrum	Analyze	e
						COME							MES		
							DO7						DSO1	DSO2	DSO2
C01	s s	M	F05	r04 I	ros s	M	го/ Т	r08 M	F09	FOID	-	F012	I	M	1303
	5	171		L	5	111	L	101	5	_			L	141	
CO2	-	S	M	-	S	М	L	M	S	-	-	-	L	М	-
CO3	S		-	-	-	М	L	М	S	L	L	-	М	М	-
CO4	S	М	S	L	S	М	L	М	S	-	-	-	М	S	-
CO5	М	М	М	L	S		L		S	-	-	L	М	S	-
S- Stro	ng; M-N	Medium	n; L-Lov	W	1	1	1	1	1		1	I	1		

REVIEW OF DIGITAL INSTRUMENTATION

Representation of analog signals in the digital domain - Review of quantization in amplitude and time axes, sample and hold, sampling theorem, ADC and DAC.

FUNDAMENTALS OF VIRTUAL INSTRUMENTATION

Concept of virtual instrumentation - PC based data acquisition - Typical on board DAQ card - Resolution and sampling frequency - Multiplexing of analog inputs - Single-ended and differential inputs - Different strategies for sampling of multichannel analog inputs. Concept of universal DAQ card - Use of timer-counter and analog outputs on the universal DAQ card.

CLUSTER OF INSTRUMENTS IN VI SYSTEM

Interfacing of external instruments to a PC - RS232, RS 422, RS 485and USB standards - IEEE 488 standard - ISO-OSI model for serial bus - Introduction to bus protocols of MOD bus and CAN bus.

GRAPHICAL PROGRAMMING ENVIRONMENT IN VI

Concepts of graphical programming - Lab-view software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart Oscilloscopic types - Loops - Case and sequence structures - Types of data - Arrays - Formulae nodes -Local and global variables String and file I/O.

ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI

Fourier transform - Power spectrum - Correlation - Windowing and filtering tools - Simple temperature indicator - ON/OFF controller - P-I-D controller - CRO emulation - Simulation of a simple second order system - Generation of HTML page. TOTAL HOURS: 45

TEXT BOOKS

S. Gupta and J.P Gupta, 'PC Interfacing for Data Acquisition and Process Control', Instrument society of America, 1994.
Peter W. Gofton, 'Understanding Serial Communications', Sybex International. 3. Robert H. Bishop, 'Learning with Labview', Prentice Hall, 2003.

REFERENCE BOOKS

1. Kevin James, 'PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control', Newness, 2000.

2. Gary W. Johnson, Richard Jennings, 'Lab-view Graphical Programming', McGraw Hill Professional Publishing, 2001.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mr.A.Balamurugan	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in								
2.	Mrs.D.Saranya	Assist Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in								

157

17ECEC27	NANOELECTRONICS	Category	L	Т	Р	Credit
		EC(PS)	3	0	0	3

PREAMBLE

The course will focus on current trends in nanoelectronics with special focus on functional electronic and magnetic properties in nanostructured materials. The academic focus is: one-electron transistors and one-electron electronics, effect of 1 and ddimensional structures on transport properties and electron transport in nanostructures.

PREREQUISITE – 17PHBS05 Smart Materials

COURSE OBJECTIVES

1	Explain the fundamental science and quantum mechanical effects associated with low dimensional	semiconductors.						
2	Identify the significance of nano level fabrication of particles and layers and their characterization							
3	Correlate the concept of quantum level transport and tunneling in similar structured nano devices.							
4	Analyze nanoscale nanostructures time, length scales and Statistics of the electrons devices etc.							
5	5 To know the low-dimensional structures electrons in quantum and electron transport in quantum wires							
COUR	COURSE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1. 1 comput	O1. Familiarizes with high-quality nano devices and an enormous variety of applications from Understand omputers to biosensors, from cell phone to space shuttles.							
CO2. S	O2. Scaling of transistors and other devices to smaller and smaller sizes to provided the basis for this Apply							
expone	xponential growth by nano electronics in the next coming decade.							
CO3. A	3. Analyze photonics, molecular electronics or revolutionary engineering solutions, such as departure Analyze							
from tv	om two-dimensional ICs on the surface of silicon wafers to three-Dimensional structures.							

CO5. Describe the Numerical analysis of a single heterojunction and Electrons quantum

CO4. Actively debate all the gigantic challenges and potential nanotechnology solutions.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	L	Μ	-	-	-	-	-	М	S	S	-
CO2	S	S	S	-	Μ	-	-	-	-	-	-	М	S	М	-
CO3	S	Μ	Μ	Μ	Μ	Μ	-	-	-	-	-	М	S	М	М
CO4	S	М	Μ	-	Μ	-	-	-	-	-	-	М	S	М	-
CO5	S	Μ	S	-	Μ	-	-	-	-	-	-	М	S	М	-
S- Stro	S- Strong; M-Medium; L-Low														

Apply

Apply

UNIT-I:

Free Electron Theory & The New Ohm's Law: Why Electrons flow, Classical free electron theory, Sommerfeld's theory, The quantum of conductance, Coulomb blockade, Towards Ohm's law. The Elastic Resistor: Conductance of an Elastic Resistor, Elastic Resistor-Heat dissipation.

Unit-II:

Materials for nanoelectronics:Semiconductors, Crystal lattices:bonding in crystals, Electron energy bands, Semiconductor heterostructures, Lattice-matched and pseudomorphic heterostructures, Inorganic nanowires, Organic semiconductors, Carbon nanomaterials: nanotubes and fullerenes

UNIT-III: Ballistic and Diffusive Transport:Ballistic and Diffusive Transfer Times, Channels for Conduction Conductivity, Conductivity: E(p) or E(k) Relations, Counting States, Drude Formula, Quantized Conductance, Electron Density - Conductivity

Unit-IV:

Electron transport in semiconductors and nanostructures Time and length scales of the electrons in solids, Statistics of the electrons in solids and nanostructures, Fermi statistics for electrons, the density of states of electrons in nanostructures, Electron transport in nanostructures.

Unit -V:

Electrons in traditional low-dimensional structures Electrons in quantum wells: Single modulation-doped heterojunctions, Numerical analysis of a single heterojunction, Control of charge transfer, Electrons in quantum wires, Electron transport in quantum wires, Electrons in quantum dots.

TEXTBOOKS

1. Introduction to Nano Science and Technology by S.M. Lindsay.

2. Supriyo Dutta -Lessons from Nanoscience: A Lecture Note Series, World Scientific (2012).

REFERENCE BOOKS

1. Supriyo Dutta --Quantum Transport-Atom to Transistor, Cambridge University Press (2005).

2 .Introduction to Nanoelectronics : Science, Nanotechnology, Engineering & Applications by Vladimir.V.Mitin.

COUR	COURSE DESIGNERS												
S.No.	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in									
2	Mr.R.Ramani	Assistant professor	ECE	ramani@vmkvec.edu.in									

17MTEC02 LOW COST AUTOMATION Category L T P									Cre	edit					
							•	EC((PS)		3	0	0	3	3
PREA	MBLE	1						1						I	
The ma	in aim	of low	cost a	utomati	ion is to	o increase	e prod	uctivity	and qu	uality of	product	to reduce	ce the co	st of	
produc	tion and	d not re	educe la	abor.											
PRER	EQUIS	SITE –	17ECI	EC20 R	Robotic	s and Aut	tomati	on							
COUR	COURSE OBJECTIVES														
1	1 To Understand the Concept and scope of industrial automation and advantages and limitations.														
2	² To apply the Automated handling systems Working principles and techniques.														
3	³ To apply the Concepts of CNC systems.														
4	4 To design a various elements of hydraulic and Pneumatic systems														
5	То ар	ply and	ł develo	op a Cl	NC part	t program	ıming,	, 'G' an	nd 'M'	codes					
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	Describ	e the w	orking	of the	mechar	nization a	ind aut	tomatic	on					Ap	ply
CO2. I	Develop	the pr	ogrami	ning in	variou	is types of	f hand	lling sy	stems					Ap	ply
CO3. I	Develop	the de	esign in	Auton	nation o	drives and	d circu	iits						Ap	ply
CO4. 0	Generat	e CNC	C machi	ine con	trol sys	stems								Ana	lyze
CO5. I	Develop	o a Mai	nual par	rt progi	rammin	ig and Co	omput	er aide	d part p	orogram	ming			Cre	eate
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	-	-
CO3	S	М	М	М	М	-	-	-	-	-	-	М	S	-	-
CO4	S	S	L	-	М	-	-	-	М	-	-	М	S	S	Μ
CO5	S	S	S	М	S	-	-	-	-	-	-	М	S	S	М
S- Stro	S- Strong; M-Medium; L-Low														
SYLL	ABUS														

Introduction to Concept and scope of industrial automation – mechanization and automation, classification, balancing of assembly line using available algorithms. Transfer line-monitoring system (TLMS) using Line Status, Line efficiency. Buffer stock Simulation in assembly line.

Automated handling systems Working principles and techniques, job orienting and feeding devices. Transfer mechanisms- automated feed cut of components, performance analysis. Uses of various types of handling systems, including AGV and its various guiding technologies.

Automation drives and circuits Design aspects of various elements of hydraulic systems such as pumps, valves, filters,

reservoirs, accumulators, actuators, intensifiers. Pneumatic fundamentals - control elements, position and pressure sensing - logic circuits - switching circuits - sequential circuits - cascade methods - mapping methods – step counter method - compound circuit design - combination circuit design.

Concepts of CNC systems, features, fundamentals, advantages and classification of NC systems Control system fundamentals, adaptive & feedback controller, transfer function, system stability, Transducer, actuators, MCU, CNC machine tooling, CNC machine control systems– ACO and ACC systems.

CNC part programming, 'G' and 'M' codes, Graphical Numerical Control - part programming - design of post processor. Manual part programming. Computer aided part programming - post processor – APT programming – programming for CNC turning center, CNC Millers, Machining center and CNC EDM.

TEXTBOOKS

- 1. Pressman R.S, Numerical Control and CAM-. John Wiley 1993 Williams
- 2. Scrope Kalpakjian, "Manufacturing processes for Engineering Materials", Addison Wesley, 1997.

REFERENCE BOOKS

- 1. Radhakrishnan, P., "Computer Numerical Control Machines", New Central Book Agencies, 1997.
- 2. Yoram Korem., "Computer control of Manufacturing systems", Mc Graw Hill, 1986.
- 3. Groover, M.P., CAD/CAM- Prentice Hall

0001													
S.No.	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Mr. R. Karthikayan	Assistant Professor (Gr-II)	FCF	rrmdkarthikevan@avit ac in									
1	wir.R. Kartilike yall	Assistant 1 Tolessol (01-11)	LCL	IIIIukaitiike yan@avit.ac.iii									
2	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in									

17N	IESE16	5 IN	JDUST	FRIAI	L TRI	BOLO	GY	Cate	egory	L		Т		Р	Cro	edit
			2001			2020	01	EC	(SE)	3		0		0		3
Pream To pr in ind	nble esent th ustries.	e engii	neering	g conc	epts of	frictio	n, its	effect	s and c	lifferen	t lubrio	cation	the	ories a	nd types	s used
Prere	quisite	NIL														
Cour	se Obje	ective														
1	1 To understand the concept of tribology.															
2	2 To examine the concepts of various types of wear															
3	To und	erstan	d and a	apply t	he filr	n lubric	cation	theor	у							
4	To illu	strate t	he var	ious ty	pes of	lubrica	ants f	or diff	erent a	applicat	ions.					
5	To den	nonstra	te the	variou	s surfa	ace eng	ineer	ing co	ncepts	and be	aring 1	nateri	als.			
Cour	se Outo	comes:	On th	e suco	cessful	l comp	letion	n of th	e cour	se, stud	lents	will b	e ab	le to		
CO1.	CO1. Explain the concepts of friction, wear and lubrication Understand															
CO2.	Illustrate about the various types of wear, wear mechanism and its Apply measurements Apply															
CO3.	Exa	mine tl	ne vari	ous fil	m lubı	rication	theor	ry					Ap	pply		
CO4.	Illus	trate a	bout th	ne vari	ous ty	pes of l	ubric	ants					Ap	pply		
CO5.	Exa	mine v	arious	surfac	e mod	lificatio	ons an	d bear	ring m	aterials.			Ap	pply		
Марр	oing wi	th Pro	gramr	ne Ou	tcome	es and l	Prog	ramm	e Spec	ific Ou	tcome	S				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 2	1	PSO 1	PSO 2	PSO 3
CO1	S	М	L	-	-	-	-	-	-	I	-	-		М	-	L
CO2	S	М	L	-	-	L	-	-	-	-	-	-		М	-	L
CO3	S	М	L	-	-	L	-	-	-	-	-	-		М	-	L
CO4	S	S	М	М	-	L	-	-	-	-	-	-		Μ	-	L
CO5 S S S M - L M - L										L						
S- Sti	rong; N	I-Med	ium; I	L-Low												

SURFACES AND FRICTION

Introduction to the concept of tribology, Tribological problems- Nature of engineering surfaces, Surface topography- Surface profilometer, measurement of surface topography-Contact between surfaces, Sources of sliding Friction- Friction due to ploughing, Friction due to adhesion- Friction characteristics of metals and non-metals -Sources of rolling friction, Stick slip motion -Friction of ceramic materials and polymers-Measurement of friction.

WEAR

Wear and Types of Wear-Simple theory of sliding wear mechanism-Abrasive wear-Adhesive wear-Corrosive wear-Surface fatigue wear situations-Wear of ceramics-Wear of polymers-Wear measurements.

FILM LUBRICATION THEORY

Coefficient of viscosity, Fluid film in simple shear-Viscous flow between very close parallel plates:Tutorials-Lubricant supply, Lubricant flow rate-Cold jacking,Couette flow-Cavitations, Film rupture, oil whirl-Shear stress variation within the film-Lubrication theory by Osborne Reynolds: Tutorials-Pressure fields for full sommerfeld, Half sommerfeld-Reynolds boundary conditions.

LUBRICANTS AND LUBRICATION TYPES

Types of Lubricants-Properties of Lubricants-Testing methods-Hydrodynamic Lubrication-Elastohydrodynamic Lubrication-Hydrostatic lubrication

SURFACE ENGINEERING AND MATERIALS FOR BEARINGS

Classification of Surface modifications and Surface coatings-Surface modifications, Transformation hardening-Surface modifications, surface fusion-Thermo chemical Processes-Surface coatings -Materials for rolling element bearings- Materials for fluid film bearings-Materials for marginally lubricated and dry bearings.

Text Books

тал р	, DOOR3										
1	Bearing Tribology: prin	niciples and app	lications.								
2	Williams.J.A, "Engine	ering Tribology'	', Oxford University Press								
3	GwidonStachowiak, Andrew W Batchelor., "Engineering tribology", Elsevier Butterworth – Heinemann, USA.										
Refere	nce Books										
1	Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication Hardcover, by Theo Mang, Kirsten Bobzin, Thorsten Bartels										
2	Cameron.A, "Basic Lu	brication Theory	y", Longman, U.K.								
3	Neale.M.J. (Editor), "T	ribology Handb	oook", Newnes Butter wort	h, Heinemann, U.K.							
Course	e Designers										
S.No	Faculty Name Designation Department/Name of the College Email id										
1	M.Saravanan	Asst Prof	MECH./ AVIT	saravanan@avit.ac.in							
2	J.Satheesbabu Asso Prof MECH./VMKVEC <u>satheesbabu@vmkvec.edu.in</u>										

17ECEC21 ADVANCED ROBOTICS Category L T P										Р	Cre	edit			
T/EC	UC21	1			KOD	ones		EC	(PS)	3	;	0	0		3
PREA	MBLE	2 Adva	nced R	obotics	s will e	xplore i	n grea	t depth	areas r	elevant t	o not on	ly indus	trial robo	otics but	service
robots	(i.e. ro	bots or	itside a	factor	y envii	onment	partic	cularly	mobile	robots) a	and the a	applicati	on of thi	s techno	logy to
real we	orld en	vironm	ents e.	g. driv	erless v	vehicles	, unma	anned a	aerial ve	ehicles a	nd tele-r	obots. S	tudents	will also	master
robot k	kinemat	tics and	l dynan	nics.											
PRER	EQUIS	SITE –	NIL												
COUR	COURSE OBJECTIVES														
1	1 To gain knowledge in robotic elements														
2 To explore the kinematics of serial and parallel robotics															
3	3 To know the motion of robot in various coordinates and surfaces														
COUF	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	llustrat	e the ki	inemati	ics of p	arallel	robotics	S							Apply	
CO2. I	Examin	e about	t the ki	nemati	cs of se	erial rob	ot suc	h as the	e direct	and inve	rse kinei	matic pro	oblems	Apply	
CO3. I	Discrim	inate v	arious	robotic	eleme	nts like	sensor	rs and a	actuator	`S				Analyz	e
CO4. I	Investig	ate the	motio	n of rol	oot in v	arious c	coordii	nates						Analyze	;
CO5. I	Explore	the mo	otion of	f robot	in seve	eral surfa	aces li	ke flat	surface	, uneven	terrain			Analyze	•
MAPE	PING V	VITH	PROG	RAM	ME OU	JTCOM	IES A	ND PF	ROGRA	AMME S	SPECIF	IC OUI	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	-	-	-	М	М	L	L
CO2	S	М	-	-	-	-	-	-	-	-	-	М	М	L	-
CO3	S	S	S	-	-	-	-	М	-	-	-	М	L	L	L
CO4	S	S	S	-	-	-	-	М	-	-	-	Μ	Μ	L	-
CO5	S	S	S	-	-	-	-	М	-	-	-	М	L	L	-
S-Stro	S- Strong; M-Medium; L-Low														

Elements of robots -- joints, links, actuators, and sensors

Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and

external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.

Kinematics of serial robots

Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.

Kinematics of parallel robots

Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.

Motion planning and control

Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.

Modeling and analysis of wheeled mobile robots

Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three-wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.

Reference Books

1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2nd reprint, 2008.

2. Fu, K., Gonzalez, R. and Lee, C.S. G., Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.

COUR	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in									
2	N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in									
3	G.Murali	Assistant Professor	ECE	muraligvmkvec@vmkvec.edu.in									

17M	ESE17	M	ODER	N MA	ANUF THOI	ACTU	RING	Cate	gory	L		Т	Р	Cro	edit
				IVIL	mo	00		EC(SE)	3		0	0		3
Prear Thi pro stat	nble s course ducts. ed aboy	e aims The st e.	to tea udents	ch the will	vario get coi	us adva mplete k	nced m knowled	anufac lge of	turing the un	proce convent	esses u tional p	sed in proces	industrie ses in ter	es for m ms of as	aking spects
Prere	quisite	– Nil													
Cours	se Obje	ctive													
1	To disc	uss the	e basic	conce	pts of	various	unconv	vention	al mac	chining	process	ses			
2	To Den	nonstra	te the	Mech	anical	energy	based u	nconve	entiona	ıl machi	ning p	rocess	ses.		
3	To Den	nonstra	te the	Electr	ical er	nergy ba	used unc	conven	tional	machin	ing pro	cesses	8.		
4	To Den	nonstra	te the	Chem	ical &	Electro	-Chemi	cal en	ergy ba	ased un	conven	tional	machinir	ng proce	esses.
5	To Den	nonstra	te the	Thern	nal ene	ergy bas	ed unco	onventi	ional n	nachinir	ng proc	esses.			
Cours	To Demonstrate the Thermal energy based unconventional machining processes. Inse Outcomes: On the successful completion of the course, students will be able to														
CO1.	Course Outcomes: On the successful completion of the course, students will be able to CO1. Discuss the basic concepts of various unconventional machining processes Understand Explain the Mechanical energy based unconventional machining Apply														
CO2.	1 1														
	ourse Outcomes: On the successful completion of the course, students will be able to O1. Discuss the basic concepts of various unconventional machining processes Understand O2. Explain the Mechanical energy based unconventional machining processes Apply O3. Illustrate the Electrical energy based unconventional machining processes Apply														
CO3.	proc	esses				igy Das		onven	tional	macm	mng		Арргу		
CO4	Exp	ain th	e Che	mical	& El	ectro-C	hemica	l ener	rgy ba	sed			Apply		
0011	unco	onvent	ional	mach	ining	process	ses								
CO5.	Illus	trate t	he Th	ermal	energ	gy base	d unco	nventi	onal 1	machin	ing		Apply		
	proc	esses													
Марр	ing wit	h Proş	gramn	ne Ou	tcome	s and P	rogran	nme Sj	pecific	Outco	mes				
СО	PO1	РО	РО	РО	РО	РО	PO7	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
		2	3	4	5	6		8	9	0	1	2	1	2	3
C01	S	-	-	- M	L	-	-	-	-	-	M	-	L		
CO2	S	-	-	M	M	-	-	-	-	-	M	-			
CO3	S	-	-	M	M	-	-	-	-	-	M	-	L		
CO4	S	-	-	М	М	-	-	-	-	-	М	-	L		
CO5	S	-	-	М	М	-	-	-	-	-	М	-	L		
S- Str	ong; M	-Medi	um; I	L-Low											

INTRODUCTION

Unconventional machining Process – Need – classification – Brief overview–merits –demerits– Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits–Wire cut EDM – working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants- Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

Text Books

1	Vijay.K. Jain "Ac	dvanced Machining	g Processes" Allied H	Publishers Pvt. Ltd.								
2	P.K.Mishra, "No Books: Series.	on Conventional Ma	achining " The Ins	titution of Engineers (India) Text								
Refere	ence Books											
1	Benedict. G.F. "N	ontraditional Manu	ufacturing Processes'	' Marcel Dekker Inc., NewYork								
2	Pandey P.C. and S	Shan H.S. "Modern	Machining Processe	es" Tata McGraw-Hill, New Delhi.								
3	Paul De Garmo, J Manufacturing"	.T.Black, and Rona	ald.A.Kohser, "Mater	rial and Processes in								
Course	e Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	S.No Faculty Name Designation Department/Name of the College Email id 1 S.PRAKASH Assistant Professor (Gr-II) Mech / AVIT prakash@avit.ac.in											
2	M SARAVANAN	Asst Prof	Mech / VMKVEC	saravananm@vmkvec.edu.in								

17040806	ENERGY PHYSICS	Category	L	Т	Р	Credit
1/1110500		Basic Sciences	3	0	0	3

PREAMBLE

This course provides an introduction to energy systems and renewable energy resources, with a scientific examination of the energy field and an emphasis on alternate energy sources and their technology and application. The class will explore society's present needs and future energy demands, examine conventional energy sources and systems, including fossil fuels and nuclear energy, and then focus on alternate, renewable energy sources such as solar, biomass (conversions), wind power, geothermal, and hydro. Energy conservation methods will be emphasized.

PRERQUISITE

NIL

COUR	SE OB	JECTI	VES												
1	To un	derstan	d vario	us energ	gy requ	ired for	r scienc	e and to	echnolo	gy					
2	To exp	plain th	e signif	ficance	of Gree	n techr	ology t	hrough	Physic	s princip	les				
3	To ex	ecute th	e vario	us ener	gy in sc	eience a	nd tech	nology							
4	To dif	ferentia	ate vario	ous ene	rgy ava	ilable i	n the ur	niverse							
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	n of the	course,	studen	ts will ł	be able	to						
CO1: D	oifferen	tiate va	rious er	nergy av	vailable	in the	univers	e				Understar	nd		
CO2: D) iscuss	various	form o	f energ	y and it	s applic	cation					Understar	nd		
CO3: II	lustrate	e variou	s form	of energ	gy and i	its appl	ication	in scier	ice and	technolo	gy	Apply			
CO4: C	ategori	ze ener	gy stora	age dev	ices							Analyze			
CO5: D	evelop	the ene	ergy con	nservati	on for v	various	applica	tions.				Analyze			
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	ES ANE) PRO	GRAM	ME SPE	CIFIC	OUTCOM	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			М									М	М		М
CO2	М	М	М	S								М			М
CO3	S	S	S	М								S	М	М	М
CO4	М	М	Μ												М
CO5															М
S- Stro	ng; M-N	Medium	n; L-Lo	W				•			•	•	•	•	
CATE	DIIC														

SYLLABUS

SOLAR ENERGY

Solar constant - Solar radiation at the earth's surface - Beam and diffuse Solar radiation - Solar radiation measurements - Angstrom compensation Pyrheliometer - Solar records - Solar pond - application of Solar ponds - Solar cells - principals - semiconductor fixation - conversion efficiency and power output - Solar functions - Solar cooking - Box type Solar cooker - Solar Green house - Types of Green houses.

WIND ENERGY

Basic principles of wind energy conversion - wind data and energy estimation - Basic components of a WECS (Wind Energy Conversion System) - Generator Control - Local Control - application of wind energy - energy from tides.

BIO - MASS ENERGY

Bioman energy - classification - Biomann Conversion technologies - Thermo chemical conversion - Fermentation - photosynthesis - classification of Biogas plants - Janta Biogas - Plant - Gasification of wood - Ethanol from wood by acid hydrolysis.

ENERGY STROAGE

Lead acid battery - Nickel cadmium battery - High temperature battery - Sodium Sulphur cell - Advantages of Batteries - Hydrogen Storage

ENERGY CONSERVATION

Principles of energy conservation - Types of energy audit – Energy conservation Approach Technologies - Co-generation - Gas turbines and diesel engine - Heat pipes - Principle - classification of heat pipes.

TEXT BOOK:

- 1. Solar Energy Dr. Muyiwa S Adaramola, 2014
- 2. Solar Energy S. P. Sukhatme, Fourth Edition, 2017

REFERENCES:

- 1. Non Conventional energy Sources G. D. RAI, Fourth Edition reprint 2003, Khanna Publication.
- 2. Solar Energy M. P. Agarwal, S. Chand & Co.,

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in
3	Dr .G. LATHA	Asso. Prof	Physics	latha.physics@avit.ac.in
4	Dr. R. N. VISWANATH	Asso. Prof	Physics	rnviswanath@avit.ac.in

17C	SES06			PR	OGRAI	MMINO	G IN C			(Category	L	Т	Р	Credit
											ES	3	0	0	3
PREAN This is the stuc program PRERN NIL COUR	MBLE a course lents a s nmable l EQUISI SE OBJ	offered trong fo ogic. TE ECTIV	in first oundation ES	semeste n on pro	r for the ogrammi	e student	ts of Bic cepts and	o-Tech I d its app	Engineer	ring. This a. It also	course h enables tl	as three control of the student	redits de s to solv	dicated ve proble	to provide ems using
1	To int	oduce E	Basics of	C.											
2	To unc	lerstand	Control	Structu	res & Ai	rrays.									
3	To leas	rn String	g concep	ot, Struct	ure and	Union i	n C.								
4	To unc	lerstand	the con	cepts of	Function	ns and P	ointers.								
5	To und	lerstand	Memor	y and Fi	le mana	gement	concepts	s in C.							
COUR	SE OUT	COME	S												
On the	successfi	ul comp	letion of	the cou	rse, stud	lents wil	l be able	e to							
CO1: U	nderstan	d the ba	sics of C	C Data ty	pes, sco	pe of va	riables,	differen	t types o	of Operate	ors	Understa	nd		
CO2: A program	pply the ming	concept	of Inp	ut/ Outp	out funct	ions, De	cision n	naking a	nd Loop	structure	es in C	Apply			
CO3: D	emonstra	ate the C	C program	ms for st	tring, arı	ays, uni	on & str	ucture.				Apply			
CO4: D	evelop C	C program	ms for fu	unctions	and poi	nters						Apply			
CO5: A	pply the	file mar	nagemen	it concep	ot to dev	elop the	C prog	rams.				Apply			
MAPP	ING WI	TH PR	OGRAN	AME O	UTCON	MES AN	D PRO	GRAM	ME SP	ECIFIC	OUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	S	М	-	S	-	-	-	М	-	S	М	М	-	М
CO2	S	М	М	-	S	-	-	-	М	-	S	S	М	М	М
CO3	S	М	М	-	S	-	-	-	М	-	S	S	М	M	М
C04	S	M	M	-	S	-	-	-	M	-	S	S	M	-	M
S- Stror	<u> </u>	M edium; 1	M L-Low	-	S	-	-	-	М	-	S	S	М	М	М

BASICS OF C

Identifiers, variables, expression, keywords, data types, constants, scope of variables. Operators: arithmetic, logical, relational, conditional and bitwise operators – Special operators: size of () & comma (,) operator – Precedence and associatively of operators – Type conversion in expressions.

CONTROL STRUCTURES

Basic input/output and library functions: Single character input/output i.e. getch(), getchar(), getche(), putchar() – Formatted input/output: printf() and scanf() – Library functions (mathematical and character functions). Decision Making and Branching – Looping statements.

ARRAYS, STRING, STRUCTURE & UNION

Arrays – Initialization – Declaration – One dimensional and two dimensional arrays. Strings: Declaration – Initialization and string handling functions. Structure and Union: structure declaration and definition – Accessing a Structure variable – Structure within a structure – Union.

FUNCTIONS AND POINTERS

Function – Function Declaration – function definition – Pass by value – Pass by reference – Recursive function – Pointers – Definition – Initialization

MEMORY AND FILE MANAGEMENT

Static and dynamic memory allocation – Storage class specifier – Preprocessor directives. File handling concepts – File read – write – Functions for file manipulation: fopen, fclose, gets, puts, fprintf, fscan, getw, putw, fputs, fgets, fread, fwrite.

TEXT BOOKS

1.Balaguruswami. E, "Programming in C", TMH Publications, 1997

REFERENCES

1. Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming using C", Cengage Learning, 3rd Edition, 2007. 2. Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.

3. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.

4. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@ vmkvec.edu.in
2	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17FC	SF04	FM	REDD	FD SY	/STFN	1 DESIG	ZN	Cate	gory	I		Т	Р	Cre	edit
TILC	51204		DEDD					EC((SE)	3	3	0	0	3	3
PREA	MBL	£								I			I	I	
Ability	y to und	lerstan	d comp	rehens	ively th	ne techno	ologies	s and te	echniqu	ies under	lying in	building	g an emb	edded so	olution
to a w	earable	, mobil	e and p	ortable	e syster	n									
PRER	EQUI	SITE -	Nil												
COU	RSE O	BJECI	TIVES												
1	To un	derstar	nd the E	Embedo	led con	cepts and	d Emt	bedded	system	n Archite	ecture				
2	To lea	arn the	archite	cture a	nd prog	gramming	g of A	RM C	ortex N	licrocon	troller				
3	To se	lect a p	roper N	Aicroco	ontrolle	r for an a	applic	ation							
4	To un	derstar	nd the u	isage o	f the de	evelopme	ent and	d debug	gging t	ools					
5	To lea	arn and	apply	the kno	wledge	e of Men	nory s	ystems	and Pe	eripheral	S				
COU	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of tl	ne cour	se, stude	ents wi	ill be al	ble to						
CO1.	Define	an emb	edded	system	and co	mpare w	with ge	eneral p	ourpose	e System	•			Unders	tand
CO2. 4	Apprec	iate the	metho	ds ada	pted fo	r the dev	velopm	nent of	a typic	al Embe	dded sys	stem		Apply	
CO3. (Get inti	oduced	l to RT	OS and	l relate	d mechai	nisms	like ar	n ability	y to desig	gn a syst	em,		Analyz	e
compo	onent, o	or proce	ess to n	neet des	sired ne	eds with	nin rea	listic c	onstrai	nts					
CO4.]	Identify	, form	ulate, a	nd solv	ve engi	neering p	proble	ms						Analyz	e
CO5. 1	Use the	techni	ques, s	kills, a	nd mod	lern engi	ineerin	ng tools	s neces	sary for	engineer	ing prac	tice	Analyz	e
MAPI	PING V	VITH	PROG	RAM	ME OU	U TCOM	IES A	ND PF	ROGR	AMME	SPECIE	FIC OU	ГСОМЕ	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	L	-	-	-	-	-	-	L	S	-	-
CO2	S	S	S	М	М	-	-	-	-	-	-	Μ	S	М	-
CO3	S	М	М	-	L	-	-	-	-	-	-	Μ	S	М	-
CO4	S	S	S	М	М	-	-	-	-	-	-	Μ	S	-	Μ
CO5	S	S	S	-	М	-	-	-	-	-	-	М	S	-	М
S- Stro	ong; M	Mediu	m; L-L	.OW							-				-

SYLLABUS INTRODUCTION TO EMBEDDED SYSTEM

Embedded system processor, hardware unit, soft wareembedded into a system, Example of an embedded system, Embedded Design life cycle,Embedded System modeling [flow graphs, FSM, Petri nets], Layers of Embedded Systems.

PROCESSOR AND MEMORY ORGANIZATION

Bus Organization, Memory Devices and their Characteristics, Instruction Set Architecture [RISC, CISC], Basic Embedded Processor/Microcontroller Architecture [8051, ARM, DSP, PIC], memory system architecture [cache, virtual, MMU and address translation], DMA, Co-processors and Hardware Accelerators, pipelining.

I/O DEVICES AND NETWORKS

I/O Devices[Timers, Counters, Interrupt Controllers, DMA Controllers, A/D and D/A Converters, Displays, Keyboards, Infrared devices], Memory Interfacing, I/O Device Interfacing [GPIB, FIREWIRE, USB, IRDA], Networks for Embedded systems(CAN, I2C, SPI, USB, RS485, RS 232), Wireless Applications [Bluetooth, Zigbee].

OPERATING SYSTEMS

Basic Features of an Operating System, Kernel Features [polled loop system, interrupt driven 113 system, multi rate system], Processes and Threads, Context Switching, Scheduling[RMA, EDF, fault tolerant scheduling], Inter-process Communication, real Time memory management [process stack management, dynamic allocation], I/O[synchronous and asynchronous I/O, Interrupts Handling, Device drivers], RTOS [VxWorks, RT-LINUX].

EMBEDDED SYSTEM DEVELOPMENT

Design Methodologies [UML as Design tool, UML notation, Requirement Analysis and Use case Modeling],Design Examples[Telephone PBX, Inkjet Printer, PDA, Elevator Control System, ATM System], Fault-toleranceTechniques, Reliability Evaluation Techniques.

REFERENCE BOOKS:

1. Wayne Wolf "Computers as components: Principles of Embedded Computing System design" The Morgan Kaufmann Series in Computer Architecture and Design, 2012.

2.Jane W. S., Liu, "Real time systems", Pearson Education, 2004.

3.Raj Kamal, "Embedded systems Architecture, Programming and design", Second Edition, 2008.

5. Steve Heath, "Embedded Systems Design", EDN Series, 2003.

COUF	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

17FFFC	'01		۸	DVAN	JCFD	CONT	ROL	SVST	FM		Catego	ry L	Т	Р	Credit
17LLLC	.01		П	DVAI	ICLD	CON	KOL	5151			EC	3	0	0	3
PREAMB This course application design, <i>N</i> automation pharmaceu or develop	SLE se int ns wh IIMO n eng ntical	roduc ich a syst gineers and fo of cor	es syst ims at em, N s emp ood ind ntrol sy	tematic givin Non-lin loyed lustries	appro g an ear sy in van , who their a	oaches adequ ystem, rious are inv pplicat	to the ate ex stabil industr olved tion, op	e desig posure ity ana ies, su with properation	n and in st alysis. ach as rocess a and n	analysi ate spac The cou the pu automat	s of conce analy urse will rocess, of tion and nent	ntrol s vsis, s be of energy contro	ystems tate sp partic , wate l, eithe	for in bace co ular int or, oil er in the	dustrial ontroller erest to & gas, design
PREREQ	UISI	ΓΕ 1. 1'	7EECC	C08 Co	ntrol s	ystems									
COURSE	OBJ	ECTI	VES												
1	Gain	comp	rehensi	ive kno	wledge	e abou	t struct	ures of	moder	n comp	uter con	trol sys	stems		
2	Deve	lop an	aware	ness of	f availa	ible de	sign to	ols							
3	Beco	me fai	niliar v	with the	e meth	odolog	gies ava	ilable	for app	lying co	ontrol in	single	loop		
4	Gain	an uno	derstan	ding o	f the d	ynamic	es of pr	rocesse	s and n	nodellin	g metho	ds			
5	Gain	an uno	derstan	ding o	f the de	esign p	rocess	for co	ntinuou	is and d	iscrete co	ontroll	ers for	these sy	vstems
COURSE	OUI	COM	IES												
On the suc	cessf	ul com	pletio	n of the	e cours	e, stud	ents wi	ill be al	ble to						
CO1	Devel	lop the	e mathe	ematica	al mode	el of th	e syste	em.			τ	Underst	tand		
CO2	Gain stabil	the kn ity of 1	owledg the sys	ge on b tem.	asic co	oncepts	of stal	oility a	nd ana	lyze the	τ	Underst	tand		
CO3	Form	ulate a	and ana	lyze th	e desc	ribing	functio	ons of n	on line	ear syste	ems. A	Apply			
MAPPINO	G WI	TH P	ROGF	RAMM	E OU	TCON	AES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCC	OMES	
COS I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	S	М	-	М	L	-	-	-	_	_	М	-	-	S
CO2	S	М	М	-	М	L	Μ	-	М	_	_	М	Μ	S	М
CO3	-	М	Μ	-	Μ	-	-	-	-	-	-	-	Μ	-	-
S- Strong;	M-M	edium	i; L-Lo	W											

STATE VARIABLE ANALYSIS

Concept of state – State Variable and State Model – State models for linear and continuous time systems – Solution of state and output equation – controllability and observability - Pole Placement – State observer Design of Control Systems with observers.

PHASE PLANE ANALYSIS

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearising non-linear systems - Concept of phase portraits – Singular points – Limit cycles – Construction of phase portraits – Phase plane analysis of linear and non-linear systems – Isocline method.

DESCRIBING FUNCTION ANALYSIS

Basic concepts, derivation of describing functions for common non-linearities – Describing function analysis of non-linear systems – Conditions for stability – Stability of oscillations.

STABILITY ANALYSIS

Introduction – Liapunov's stability concept – Liapunov's direct method – Lure's transformation – Aizerman's and Kalman's conjecture – Popov's criterion – Circle criterion.

OPTIMAL CONTROL

Introduction -Decoupling - Time varying optimal control – LQR steady state optimal control – Optimal estimation – Multivariable control design.

TEXT BOOKS

- 1. I.J. Nagrath and M. Gopal, 'Control Systems Engineering', New Age International Publishers, 2003.
- 2. Ashish Tewari, 'Modern control Design with Mat lab and Simulink', John Wiley, New Delhi, 2002.
- 3. Sarkar B.N, 'Advanced Control Systems' Prentice Hall India Learning Private Limited (2013)

REFERENCE BOOKS

1. George J. Thaler, 'Automatic Control Systems', Jaico Publishers, 1993.

2. M.Gopal, Modern control system theory, New Age International Publishers, 2002.

3. Gene F. Franklin, J. David Powell and Abbasemami-Naeini, "Feedback Control of Dynamic Systems", Fourth edition, Pearson Education, Low price edition. 2002.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	N.P. GOPINATH	Assistant Professor AP.GR-II	EEE / AVIT	gopinathnp@avit.ac.in

17MESI	E 42		DESI	GN FO	R QU	ALITY	ł	Ca EC	tegory C(SE)			T 0	P 0	C 3]
PREAM	IBLE	1								5			0	5	1
This cou optimiza	rse rev	views chnie	the st ques	atistica	l techn	iques,	designi	ing vari	ous exj	perimen	ts and	special exp	perimen	ts and	
PRERE	QUISI	ITE:	NIL												-
COURS	E OBJ	ECT	IVES												-
1 U	Unders	tand	about	Design	n princi	ples ar	nd anal	ysis of	statistic	cal tech	niques				-
2	Apply	sing	le facto	or & m	ulti fact	torial e	xperim	nents							-
3 A	Analyz	e fac	torial c	lesigns											-
4 A	Analyz	e the	Select	ion of	orthogo	onal ari	rays								-
5 A	Apply th	he Pi	rinciple	es of ro	bust de	sign									-
COURS	E OUT	COI	MES												-
On the su	uccessf	ful co	ompleti	ion of t	he cou	rse, stu	dents v	will be a	able to						-
CO1 Ur	ndersta	nd tl	he the	various	statisti	cal tec	hnique	s				Understan	ıd		1
CO2. [Design	and	apply s	ingle fa	actor &	multi	factoria	al expe	riments	5		Apply			-
CO3. A	nalyse	the	special	design	ns in fa	ctorial	experi	ments				Analyze			-
CO4 .	Analys	e the	e desig	n of or	thogona	al exp	erimen	ts				Analyze			
CO5. A	Analyse	e the	robust	design	and ho	ow to o	ptimize	e those	data			Apply			
COS P	PO1 P	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PS01	PSO2	PSO
CO1 S	s s	5	S	Μ	-	-	-	-	-	-	-	-	М	L	
CO2 S	s s	5	S	Μ	-	-	-	-	-	-	-	-	М	L	
CO3 S	s s	5	S	Μ	-	-	-	-	-	-	-	-	M	L	+
CO4 S	s s	5	S	Μ	-	-	-	-	-	-	-	-	M	L	-
CO5 S	s s	5	S	Μ	_	_	-	-	-	-			M	L	
S- Stron	ng M-N	/ledi	l um L	- Low											
Syllabus		icui		2011											-
INTRO	, DUCT	ION	I												-
Perceptio	on of a	ualit	v. Tagi	uchi's o	lefiniti	on of a	ualitv -	– qualit	v loss f	function	. Plan	ning of exr	eriment	s.	-
design p	rinciple	es, te	rminol	ogy, no	ormal p	robabi	lity plo	ot, Anal	ysis of	varianc	e, Line	ear regressi	ion mod	els.	
FACTO	RIAL	EX	PERIN	1ENTS	r		J I ''	,			,	6			-
Design a	and ana	lysis	of sin	gle fact	or and	multi-	factor e	experim	ents, te	ests on r	neans.	EMS rules	5		-

SPECIAL DESIGNS

2 K Factorial designs, Fractional factorial designs, Nested designs, Blocking and Confounding.

ORTHOGONAL EXPERIMENTS

Selection of orthogonal arrays (OA's), OA designs, conduct of OA experiments, data collection and

analysis of simple experiments, Modification of orthogonal arrays

ROBUST DESIGN

Variability due to noise factors, Product and process design, Principles of robust design, objective

functions in robust design - S/N ratios, Inner and outer OA experiments, optimization using S/N ratios,

fraction defective analysis, case studies

Text Books:

- 1. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012
- 2. Douglas C Montgomery, "Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference:

- 1. Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New Age International Publishers, 2010
- 2. Nicolo Belavendram, "Quality by design" Taguchi techniques for Industrial experimentation, Prentice Hall.

Course Designer

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID		
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com		
2	R.Jayara man	R.Jayara Associate man Professor		jayaramanr@vmkvec.edu.in		

17MEEC13			INDUSTRIAL SAFETY	Ca	ategor	y	L	Т		Р	Cre	edit					
					E	C(PS))	3	0		0		3				
Preamble To familiarize with safety issues in design, handling and industrial environment including the safety aspects and various laws associated with industrial safety.																	
Prer NIL	Prerequisite NIL																
Course Objective																	
1	1 To understand about safety management and understand all the safety aspects thoroughly.																
2	2 To understand the various safety procedures and precaution to be followed during the operation of different types of machines.																
3	To apply thoroughly equipped with sufficient knowledge of handling the different types of againments and materials used for industrial sofety.																
4	4 To analyze the sufficient knowledge and sharing of expertise for emergency situations arising due to accidents and monitoring of health aspects																
5	То	analys	is of	the va	rious	laws 1	regardi	ng he	ealth i	ssues	and sa	fety of	f pers	sonal	ls.		
Cou	Course Outcomes: On the successful completion of the course, students will be able to																
CO1		Expla	in the	e safet	ty con	cepts	and ro	le of	safet	y mana	ageme	nt.			Under	stand	
CO2	CO2. Discuss various safety aspects associated with operational safety of Understand equipments like boilers, pressure vessels and other machineries used in workshop.																
CO3	3. Apply various safety measures to be undertaken with respect to Apply industrial safety																
CO4	Illustrate the various strategies to prevent accidents and Analyze implementation Illustrate the various strategies to prevent accidents and																
CO5	Outline the implementation of safety standards and the various laws Analyze related to safety, health and welfare of personnel.																
Map	ping	g with	Prog	ramn	1e Ou	tcom	es and	Prog	gram	me Sp	ecific	Outco	omes				
CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12	PSO1	PSO2	PSO3
CO)1	S	L	L	L	-	-	-	-	-	-	-	-		Μ	L	-
CO	02	S	L	L	L	-	-	-	-	-	-	-	-		Μ	L	-
CO	03	S	М	М	L	-	-	-	-	-	-	-	-		М	L	-
СО	94	S	М	М	L	-	-	-	-	-	-	-	-		Μ	L	-
СО	CO5 S M M L								-								
S- St	S- Strong; M-Medium; L-Low																
SYL	SYLLABUS																

UNIT I - SAFETY MANAGEMENT

Evaluation of modern safety concepts - Safety management functions – safety organization, safety department – safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity.

UNIT II: OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation – electroplating-hot bending pipes -Safety in welding and cutting. Cold-metal Operation – Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting –shot blasting, grinding, painting - power press and other machines

UNIT III: SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals - Industrial fires and prevention - Road safety - highway and urban safety – Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

UNIT IV: ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programs -Specific hazard control strategies - HAZOP - Training and development of employees - First Aid- Fire fighting devices - Accident reporting, Investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention – Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian Boiler act - The environmental protection act - Electricity act - Explosive act.

Text	ext Books							
1	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House							
2	Handlin.W, "Industrial Hand Book", McGraw-Hill, 2000.							
Refe	eference Books							
1	Heinrich.H.W, "Industrial Accident Prevention", McGraw-Hill, 1980.							
2	Rudenko.N, "Material Handling Equipments", Mir Publishers, Moscow, 1981.							
3	Lees.F.P, "Loss "Prevention in Process Industries", Butterworths, New Delhi, 1986.							
4	Accident Prevention Manual for Industrial Operations", N.S.C.Chicago, 1982							
Cou	Course Designers							
S.No	Faculty Name	Designation	Department/Na me of the College	Email id				

1	S.DURAITHILAGAR	ASSO.PROF	MECH/VMKVEC	duraithilagar@vmkvec.edu.in												
2	C.Thygarajan	AP II	Mech/AVIT	Thygararajan@avit.ac.in												
17014	0004	I	BIOM	EDICA	AL INS	STRUI	MENT	'ATIO	N &	Cat	egory	L	Т	Р	Cr	redit
---	---	---	---	--	--	---	---	---	--	-----------------------------------	---------------------------------	-----------------------	----------------------------	------------------------------	------------------------------------	--------------------------------
17BM	CC04			Μ	EASU	REMI	ENTS				CC	3	0	0		3
PREAT The var instrum patient. its work	MBLE riety of nentation This control king pri	diagno n. Thes ourse is nciple	ostic, co se electro s design and to r	ontrol, a conic sy led to a measure	and more vstems of cquire le variou	nitoring can be knowle s physi	; equipr used in dge abo ologica	nent us a phys out the l param	ed for r ician's differen neters.	nedical j office, a t compo	purposes medical nents of	com labor vario	orises atory, 1s bio	an arra or be : medica	y of bion implanted l equipm	medical d into a ent and
PRER	EQUIS	ITE –	NIL													
COUR	SE OB	JECTI	IVES													
1	To kn	ow abo	ut bioe	lectric s	signals,	electro	des and	l its typ	es.							
2	To kn	ow the	various	Bio po	otential	amplifi	ers.									
3	To stu	ıdy abo	ut vario	ous Phy	siologic	cal mea	sureme	nts.								
4	To stu	dy the	recordi	ng of va	arious c	ardiac	signals.									
5	To stu	ıdy abo	ut clini	cal labo	oratory i	nstrum	ents an	d blood	cell co	unters.						
COUR	SE OU	TCOM	1ES													
On the	success	ful con	npletior	n of the	course,	studen	ts will	be able	to							
CO1. E	xplain	the acq	uisition	of vari	ous bio	signals	susing	various	types o	f Electro	odes.		Und	erstand		
CO2. E	Examine	the dif	ferent b	blood ty	pes of	cell and	l usage	of clini	cal labo	oratory in	nstrumen	ıts.	App	ly		
CO5. U	Jse bio-	amplifi	ers in n	nedical	applica	tions.							App	ly		
CO3. R	lecord a	ind ana	lyze va	rious pł	nysiolog	gical sig	gnals.						Ana	yze		
CO4. C	Classify	various	s cardia	c functi	on mea	sureme	ents.						Ana	yze		
MAPP	ING W	TTH P	ROGR	AMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPI	ECIFIC	OUT	СОМ	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	М	L				L						М		М	М	М
CO2	S	М	М	S		М		L	М			М			М	S
CO3	S	М	М	S		М	М	L	М			М		М	М	S
CO4	S	М	S	М		М	S	М	S			S		М	S	S
CO5	S	М	S	М		М	S	М	S			S		М	S	S
S- Stro	ong; M	Mediu	ım; L-l	Low									•			

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential – Resting and action potential, Nernst equation, Goldman equation. Recording electrodes – Electrodes: Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artefacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Types of electrodes.

BIO AMPLIFIERS

Bio amplifier, Need for Bio amplifier, Operational amplifier characteristics, Different modes of operation of differential amplifier, Basic operational amplifier circuits – Inverting, Non inverting, differential amplifier, Instrumentation amplifier. Chopper amplifier, Isolation Amplifier.

BIO SIGNALS RECORDING

ECG- Anatomy and Electrical conducting system of heart, Genesis of ECG, Einthoven triangle, Lead system, Segments and intervals of ECG, Normal and abnormal ECG wave forms, ECG Machine, Recording set up of EMG and EEG. Heart sounds and PCG, ERG, EOG.

CARDIAC FUNCTION MEASUREMENTS

Blood pressure measurement – direct and indirect method, Respiration rate measurement, Measurement of heart rate and pulse rate, Plethysmography technique. Blood flow measurement – electromagnetic, ultrasonic. Cardiac output measurement – Indication dilution method and dye dilution method

CLINICAL LABORATORY INSTRUMENTS AND BLOOD CELL COUNTERS

Spectrophotometer, colorimeter, flame photometer, auto-analyser. Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.
- 3. Arumugam, M, "Biomedical Instrumentation", Anuradha publications, 2008.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M "Introduction to Biomedical Equipment Technology", John Wiley and sons, New York, 4th Edition, 1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

17MF	ESE32		CO	MPOS	ITE M	ATER	IALS			(Categor	y L	Т		Р	С
			00]	EC(SE)	3	0		0	3
PREA	AMBL	Æ														
This c	course	review	s the	various	compo	site ma	aterials	s their	proc	essing t	echniqu	es and	l their	be	havio	rs,
and to	devel	op mo	dels a	nd their	applica	ations i	n aer	ospace	, auto	motive	and mee	dical f	ields			
PREI	REQU	ISITE	- NII	.												
COU	RSE ()BJE(CTIV	ES												
1 U	Unders	tand a	bout I	Fibre rei	nforced	l Plasti	cs									
2 U	nderst	and th	e man	ufacturi	ing pro	cesses	of the	compo	osite n	naterial	S					
3 A	Analyse	e abou	t macı	o mech	anical ł	behavio	or of F	RP								
4 A	Analys	e abou	t micr	omecha	nical b	ehavio	r of co	mposi	te mat	terials						
5 U	nderst	and ab	out m	aterial r	nodels	of com	posite	S								
COU	RSE (OUTC	OME	S												
On th	e succe	essful o	compl	etion of	the co	urse, st	udents	s will l	be able	e to						
CO1	CO1 .Understand the types of reinforcements and fibers used in composite materials Understand															
CO2.	CO2. Understand various manufacturing techniques in composite manufacturing Understand															
CO3.	Analy	yse the	e mac	cro mecl	hanical	behav	vior of	Fiber	Reinf	forced I	Plastics			An	nalyze	
CO4.	Ana	lyse tl	he Mi	cro mec	hanical	l beha	vior of	Fibe	r reinf	orced p	lastics			An	nalyze	
CO5.	Appl	y mod	els fo	r solvin	g the co	omposi	ite mat	erial r	nanufa	acturing	5			Ap	ply	
COS	PO	РО	РО	PO4	PO5	PO	PO	РО	PO	PO1	PO1	PO1	PSC)	PSO	PSO
005	1	2	3	104	105	6	7	8	9	0	1	2	1		2	3
CO1	S	-	L	-	-	М	S	-	-	-	-	-	L	-		
CO2	S	-	L	-	-	L	S	-	-	-	-	-	L	-		
CO3	S	S	S	S	L	L	S	-	-	-	-	-	М	-		
CO4	S	S	S	S	L	L	S	-	-	-	-	-	М	-		
CO5	S	S	S	S	S	L	-	-	-	-	-	-	Μ	-		
S- Str	ong N	1-Med	ium	L- Low	7	1	1	1	1	1	1	1	1			
Sylla	ous															
FIDD			_ ~		TT GG											

FIBRE REINFORCED PLASTICS (FRP)

Definition; Types; General properties and characteristics; Reinforcing materials - particles, fibers,

whiskers; Properties of reinforcing materials; Matrix materials; Additives; Properties of FRP materials; Applications

MANUFACTURING PROCESSES

Open mold processes – Hand layup, Spray up, Vacuum bag, Pressure bag & autoclave, Centrifugal

casting, Filament winding; Closed mold processes – Compression molding, Resin transfer molding (RTM), Injection molding, Pultrusion; SMC & DMC products, etc.

MACROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Design variables; Selection of fiber-matrix and manufacturing process; Effects of mechanical, thermal,

electrical and environmental properties, Fiber orientation, Symmetric and asymmetric structure; Effects of

unidirectional continuous and short fibers; Lamination theory; Failure theories.

MICROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Strengthening methods, Elasticity of fibre composites, Plasticity and fracture of composites, Crack

propagation in fibre composites, Failure under compressive loads.

MATERIAL MODELS

Law of Mixtures, Shear lag model, Laminated plate model, Eshelby's models, Other models.

Text Books:

1. Haslehurst.S.E., "Manufacturing Technology ", ELBS, London.

2. Krishnan K. Chawle. "Composite Material: Science and Engineering" Second Edition, Springer.

Reference:

1.. T.W.Clyne, P.J. Withers, "An Introduction to metal matrix composites", Cambridge University Press.

2. F.C. Campbell "Structural Composite Materials", Materials Park, ASM International, 2010

Course Designers

	e z esigneis			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com
2.	J.Santhosh	Assistant Professor	Mechanical/VMKV EC	santhosh@vmkvec.edu.in

171	MESI	E08		PROI	DUCT	DESI	IGN A	ND	Ca	ategor	y	L	Т	Р	Cre	edit
1/1		200		D	EVEI	LOPM	IENT		Ε	C(SE))	3	0	0		3
Pream The f	mble ocus ions c	of Pr of the	oduct firm	Desig in crea	n and ating a	Devel new p	opmer produc	nt is in t.	tegrati	on of t	the mar	keting,	design	and mar	nufactur	ing
Prere NIL	equis	ite														
Cour	se O	bject	ive													
1	To e	ensui	re unc	lersta	nding	of the	e grov	wth of	f the o	rganiz	zation					
2	To gain application knowledge of the surplus capacity of the organization, such as physical facility, man power, etc.															
3	Тоа	o apply knowledge of application in the utilization of surplus fund of the organization.														
4	То g	gain	applio	cabilit	y kno	wledg	ge in 1	new r	equire	ement	of the	custor	ners.			
5	Тоа	analy	ze wa	ays to	incre	ease c	ompa	ny's r	narke	t share	e and to	o targe	t new r	narket s	egment	
6	Тое	o ensure analysis capability in complete product range in company's portfolio.														
Cour	Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	L p	Jnde lann	rstand ing pi	l conc	epts o	of pro	duct d	evelo	pmen	t and o	outline	e produ	ict	Under	stand	
CO2.	L p	Jnde produ	rstand ict spe	l relat ecifica	ive in ations	nporta	nce of	f cust	omer	needs	in esta	ıblishiı	ng	Under	stand	
CO3.	Io ii	denti nvolv	fy co ved in	ncept conc	gener ept se	ation lectio	activi n and	ties a testir	nd sui 1g.	nmari	ze the	metho	dology	Apply		
CO4.	C u	Dutlii Inder	ne sup stand	oply c the in	hain c ndustr	onsid	eratio sign p	ns in roces	produ s.	ct arc	hitectu	re and		Apply		
CO5.	A c	Apply costs.	y desi	gn foi	man	ufactu	ring c	concep	ots in	estima	ating n	nanufa	cturing	Apply	,	
CO6.	A a	Apply and h	y prin ighlig	ciples tht im	of pr portai	ototyp nce of	oing in mana	n proc Iging	luct de projec	evelop ets.	oment	econor	nics	Apply		
Map	ping	with	Prog	ramm	e Out	comes	and H	Progra	amme	Specif	fic Out	comes		-1		
СО	Р	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
COI		М	L	М	-	М	-	-	-	-	L	-	-	М	-	-
CO2	2	L	L	М	-	-	-	-	-	-	-	-	-	М	-	-
CO3	3	S	М	М	S	-	-	-	-	-	-	-	-	S	-	-

_

CO4	М	М	S	-		L	-	-	-	М	М	-	-	-	-
CO5	S	-	S	L	М	М	-	-	-	-	-	-	М	-	-
CO6	S	L	L	S	S	-	-	-	М	-	-	-	М	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT-I INTRODUCTION - DEVELOPMENT PROCESSES AND ORGANIZATIONS – PRODUCT PLANNING

Characteristics of successful product development to Design and develop products, duration and cost of product development, the challenges of product development. A generic development process, concept development: the front-end process, adapting the generic product development process, the AMF development process, product development organizations, the AMF organization. The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.

UNIT-II IDENTIFYING CUSTOMER NEEDS AND PRODUCT SPECIFICATIONS

Gathering raw data from customers, interpreting raw data in terms of customer needs, organizing the needs into a hierarchy, establishing the relative importance of the needs and reflecting on the results and the process. Specifications, establish specifications, establishing target specifications setting the final specifications.

CONCEPT GENERATION - CONCEPT SELECTION AND CONCEPT TESTING

The activity of concept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey population and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process.

PRODUCT ARCHITECTURE -INDUSTRIAL DESIGN AND DESIGN FOR MANUFACTURING

Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors.

PROTOTYPING PRODUCT DEVELOPMENTAND ECONOMICS MANAGING PROJECT

Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade- offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation.

Text Books

1	Ulrich K. T, Eppinger S.D and Anita Goyal, "Product Design and Development", Tata McGraw Hill, 2009.
Refer	rence Books
1	1.Karl Ulrich, T, Steven Eppinger, D, "Product Design and Development", McGrawHill, 2015.

2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.

- 3. Timjones, "New Product Development: An Introduction to a multifunctional process", Butterworth-Heinemann, 1997.
- Geoffery Boothroyd, Peter Dewhurst and Winston Knight, A, "Product Design for Manufacture and Assembly", CRC Press, 2011.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.VENKATESH	Assistant Professor	Mech / VMKVEC	rvenkatesh@vmkvec.edu.in
2	R.PRAVEEN	Assistant Professor	Mech / AVIT	praveen@avit.ac.in

17MF	SE20		RA	PID P	ROT	OTYPI	NG A	ND		Catego	ory	L	Т	Р	Credit
	5				TOO	DLING				EC(SE)	3	0	0	3
PREA	MBLE	2													
This one o	course j f the re	provie cent i	des to : nanufa	impar acturii	t knov 1g tec	wledge hnolog	of the	e Rapi	d Pro	ototypin	g and	Tooli	ng techni	ques, w	hich is
PREF	REQUIS	SITE:	NIL												
COU	RSE OI	BJEC	TIVES	5											
1	To uno	lersta	nd the l	history	and d	levelop	ment f	or rapi	d prod	duct dev	elopm	ent.			
2	To discuss the various techniques of solid based process for rapid production.														
3	To discuss the various techniques of based process for rapid production.														
4	To dis	To discuss the various tooling used for Rapid manufacturing tooling techniques.													
5	Optimize FDM process parameters to improve the quality of the parts.														
COU	URSE OUTCOMES														
On the	e succes	sful c	omplet	ion of	the co	ourse, st	udents	s will b	e able	e to					
CO1.	Unde	erstan	d the w	orking	g princ	ciple an	d vario	ous RP	T tech	nniques.				Un	derstand
CO2.	Expl suita	ain th ble pr	e vario ocess.	us soli	d and	liquid l	based	method	ls for	RPT tec	chnique	es used	to select	A	pply
CO3.	Expl proc	ain th ess.	e vario	us pov	vder b	ased m	ethods	for RI	PT tec	hniques	used t	o selec	t suitable		Apply
CO4.	App	ly the	tooling	g and r	noldin	g devic	es use	d for R	RPT m	achinin	g opera	ations.			Apply
CO5.	Gain appli	appli	cation	oriente ss	ed kno	wledge	relate	ed to R	PT in	Reverse	e Engin	leering			Apply
MAP	PING V	VITH	PROG	GRAN	IME (OUTC	OMES	S AND	PRO	GRAM	IME S	PECII	FIC OUT	COME	5
CO S	PO1	PO 2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	Μ	-	-
CO2	S	М	L	-	М	-	-	-	-	-	-	-	М	-	-
CO3	S	М	М	-	Μ	-		-	-	-	-	-	Μ	-	-
CO4	S	S	S	-	М	-	-	-	-	-	-	-	Μ	-	-
CO5	S	S	S	-	Μ	-	-	-		-	-	-	М	-	-
S- Str	ong; M	-Med	ium; L	L-Low											
l															

Syllabus

INTRODUCTION

History – Development of RP systems – RP process chain - Impact of Rapid Prototyping on Product Development –Digital prototyping - Virtual prototyping-Rapid Manufacturing- Principle – Fundamental – File format – Other translators-Data Processing for Rapid Prototyping: CAD model preparation, Part orientation and support generation, Support structure design, Model Slicing and contour data organization, direct and adaptive slicing, Tool path generation.

LIQUID AND SOLID BASED PROCESS:

Classification – Liquid based system – Stereolithography (SLA)-Solid Ground Curing (SGC)- products, Advantages, Limitations, Applications and Uses. Solid based system – Fused Deposition Modeling- Laminated Object Manufacturing-Multi Jet Modeling System-principle, process, products, advantages, applications and uses

POWDER BASED PROCESS

Selective Laser Sintering – Three Dimensional Printing – Direct shell production casting –Laser Engineered Net Shaping (LENS)- -Direct Metal Deposition-Principle-Materials-process- products,-advantages- limitations- applications

RAPID TOOLING

Introduction-Need-Types -Advantages-Applications-Indirect rapid Tooling-silicone Rubber Tooling-Spray metal tooling-RSP Tooling-Reaction Injection Moulding-Direct Rapid Tooling-Direct AIM-DMLS-Copper Polyamide-Laminated Tooling

REVERSE ENGINEERING

Introduction-concept of Reverse Engineering - Generic Process - Scanning-measuring device- contact type and non-contact type -Point Processing- CAD model creation from point clouds-preprocessing, point clouds to surface model creation, medical data processing – types of medical imaging, software for making medical models, medical materials, other applications

TEXT BOOKS:

 Rafiq I. Noorani, Rapid Prototyping, "Principles and Applications", Wiley & Sons, 2006.
 Chua C.K, Leong K.F and Lim C.S, "Rapid Prototyping: Principles and Applications", Second Edition, World Scientific, 2003.

REFERENCES:

1. N.Hopkinson, R.J.M, Hauge, P M, Dickens, "Rapid Manufacturing – An Industrial revolution for the digital age", Wiley, 2006

2. Ian Gibson, "Advanced Manufacturing Technology for Medical applications: Reverse Engineering, Software conversion and Rapid Prototying", Wiley, 2006

3.Paul F.Jacobs, "Rapid Prototyping and Manufacturing : Fundamentals of Stereolithography", McGraw Hill 1993.

4. Pham. D.T., and Dimov. S.S., "Rapid Manufacturing", Springer Verlog 2001.

S.N 0	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asst.Prof	MECH/AVIT	samuvelmichael@avit.ac.in
2	S. ARUNKUMAR	Asst.Prof.	MECH/VMKVEC	arunkumar@vmkvec.edu.in

17M	FSF77		А	UTO	моті	IVE		Cate	egory	L	,	Т	Р	Cro	edit
1/101			I	NFOT	'RON	ICS		EC	(SE)	3		0	0		3
Pream To stu Electr	Preamble To study Instrument Clusters, Telematics Systems, Power train, Electronic Control Units and Cockpit Electronics products for vehicles.														
Prere	quisite	NIL													
Cours	se Obje	ctive													
1	To Lea	rn the	variou	ıs driv	ver ass	istant s	syster	n in a	Vehic	le.					
2	To Lea	rn the	Globa	ıl posi	tionin	g and r	naviga	ation s	ystem	•					
3	To kno	wn the	e collis	sion w	arning	g and d	letecti	ion sys	stem.						
4	To stuc	ly abo	ut the	adapti	ve co	ntrol sy	ystem	and c	omfor	t syster	ns in aı	ıtomo	biles		
5	To stuc	ly abo	ut the	securi	ty and	l smart	card	systen	n.						
Cours	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.Known the vehicle motion control and stabilization system.Understand															
CO2.	CO2. Gain the knowledge of Safety and comfort system. Understand														
CO3.	Kno	wn the	vario	us safe	ety sys	tems u	sed in	vehic	les.				Understa	ind	
CO4.	Desc	cribe th	ne basi	cs of v	vehicle	e collisi	ion an	id its e	ffects.				Understa	ind	
CO5.	App	ly the 1	Import	ance c	of Driv	er assi	stance	e, secu	rity an	d warni	ng syst	em.	Apply		
Марр	ing wit	h Pro	gramr	ne Ou	tcome	es and	Prog	ramm	e Spec	rific Ou	tcomes	6	_		
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO3	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO5	S	М	М	L	-	-	-	-	-	-	-	L	L	-	-
S- Str	ong; M	[-Medi	ium; I	L-Low	,										

DRIVER ASSISTANCE SYSTEMS

Driver information, driver perception, driver convenience, driver monitoring, general vehicle control, longitudinal and lateral control, collision avoidance and vehicle monitoring.

TELEMATICS

Global positioning system, geographical information systems, navigation system, architecture, automotive vision system and road recognition.

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions.

ADAPTIVE CONTROL SYSTEMS AND COMFORT SYSTEMS

Adaptive cruise control system, adaptive noise control, active suspension system, power steering, collapsible and tilt able steering column and power windows, Adaptive lighting system.

SECURITY SYSTEMS

Antitheft technologies-mechanical, electromechanical and electronic immobilizers, alarm system, stolen vehicle tracking system, remote keyless entry, smart card system and number plate coding.

Text B	ooks											
1	Ljubo Vlacic, Michel Par Butterworth-Heinemann	ent and Fumio publications, O	Harashima, "Intelli xford, 2001.	gent Vehicle Technologies",								
2	Robert Bosch, "Automotive Hand Book", 5th Edition, SAE, 2000.											
3	Ronald K Jurgen, "Navigation and Intelligent Transportation Systems – Progress in Technology", Automotive Electronics Series, SAE, USA, 1998											
Refere	ierence Books											
1	William B Riddens, "Understanding Automotive Electronics", 5th edition, Butter worth Heinemann Woburn, 1998.											
2	Bechhold, "Understandin	g Automotive I	Electronics", SAE, 1	1998.								
3	Allan W M B, "Automotive Computer Controlled Systems", Elsevier Butterworth-Heinemann, 2011.											
Course	e Designers											
S No	Faculty Nama	Designation	Department/Na	Fmail id								

S.No	Faculty Name	Designation	Department/Na me of the College	Email id
1	M. SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in
		Assistant	MECH /	chandrasekar@vmkvec.edu.in
2	R. CHANDRASEKAR	Professor	VMKVEC	

17EEEC21

Category	L	Т	Р	Credit
EC-PS	3	0	0	3

PREAMBLE

Non Conventional sources of energy are generally renewable sources of energy. This type of energy sources include anything, which provides power that can be replenished with increasing demand for energy and with fast depleting conventional sources of energy such as coal, petroleum, "natural gas etc. The non- conventional sources of energy such as energy from sun, wind, biomass, tidal energy, geo thermal energy and even energy from waste material are gaining importance. This energy is abundant, renewable, pollution free and eco-friendly. It can also be more conveniently supplied to urban, rural and even remote areas. Thus, it is also capable of solving the twin problems of energy supply in a decentralized manner and helping in sustaining cleaner environment. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on grid applications

PREREQUISITE

> NIL

COURSE OBJECTIVES To impart the knowledge of basics of different non conventional types of power generation & 1 power plants To understand the need and role of Non-Conventional Energy sources. 2 To learn economical and environmental merits of solar energy for variety applications. To learn modern wind turbine control & monitoring. 3 To learn various power converters in the field of renewable energy technologies. 4 5 To study and analyse different types of Power converters for Renewable energy conversion **COURSE OUTCOMES** On the successful completion of the course, students will be able to Identify the different non conventional sources and the power CO1 Understand generation techniques to generate electrical energy. Explore the Solar Radiation, different Methods of Solar Energy **CO2** Analyse Storage and its Applications. Familiarize the Winds energy as alternate form of energy and to Understand CO3 know how it can be tapped

CO4	Explore the Geothermal Energy Resources and its methods.	Understand
CO5	Identify the Bio mass and Bio gas resources and its tapping technique	Analyze
CO6	Investigate the Tidal, Wave and OTEC Energy, Concepts of Thermo- Electric Generators and MHD Generators	Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L		М	М		L	L		L			М			L
CO2	S	L	Μ	L	Μ	Μ	S	L	М	М	М	S	S	L	S
CO3		Μ	Μ	S	L	Μ	L			L	S		L	М	L
CO4	М	L				S		S	S	L	М	S			М
CO5		Μ	L	Μ	L	L	Μ	L	S	М	S	L	L	L	М
CO6	L						М		S	S		М	М		L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Introduction to Solar Energy - Radiation and its measurement, Solar Energy conversion and its types -Introduction to Solar Energy Collectors and Storage, Applications of Solar Energy: Solar Thermal Electric Conversion Systems, Solar Electric power Generation, Solar Photo-Voltaic, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation, Stand-alone, Grid connected solar power satellite

WIND ENERGY CONCEPT

Introduction - Basic Principles of Wind energy conversion-The nature of wind- The power in the wind (No derivations) - Forces on the Blades (No derivations)-Site Selection considerations-Basic components of a wind energy conversion system (WECS)-Advantages & Limitations of WECS-Wind turbines (Wind mill)-Horizontal Axis wind mill-Vertical Axis wind mill-performance of wind mills-Environmental aspects - Determination of torque coefficient, Induction type generators

GEOTHERMAL AND BIOMASS ENERGY

Geothermal Sources - Hydro thermal Sources - a. Vapor dominated systems b. Liquid dominated systems -Prime movers for geothermal energy conversion - Biomass Introduction - Biomass conversion techniques-Biogas Generation-Factors affecting biogas Generation-Types of biogas plants- Advantages and disadvantages of biogas plants-urban waste to energy conversion - MSW incineration plant.

TIDAL AND OTEC ENERGY

Tidal Energy-Basic Principles of Tidal Power-Components of Tidal Power Plants- Schematic Layout of Tidal Power house-Advantages & Limitations of Tidal, Wave, OTEC energy - Difference between tidal and wave power generation, OTEC power plants, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC.

TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.
- Non Conventional Energy Resources, Shobh Nath. Singh, Pearson Education India, 2016, e ISBN : 978933255906 - 6

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

cocusi				
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in

17EEC	·C15			FI FC	TDIC	ат ті	CUN		V		Catego	ry L	Т	Р	Credit
1/LEC	.015			ELEU		AL II		OLUG	T 1		FC	3	0	0	3
PREAM machine	IBLE This c s and ti	course cansfor	is con mer.	cerned	with 1	the cor	structi	ons, cł	aracte	ristics a	nd appli	cations	s of va	rious	electrical
PRERE	QUISI	TE	EESU3	Pooi	ofEld	otrical	& Ela	otronio	. Engi	nooring					
COURS	E OBJ		ILSUS IVES	- Dask		Luicai	a Lie	cuonic	s Eligi	leering					
1	To g	ain kn	owledg	ge abou	it the w	vorking	g princi	ple, co	nstruct	ion, app	olications	of DC	C mach	ines	
2	To familiarize construction, operation, testing of transformers.														
3	To g	ain kn	owledg	ge abou	it the c	onstruc	ction, o	peratio	on and a	applicat	ions of I	OC mae	chines		
4	To g	ain kn	owledg	ge abou	it const	truction	n, princ	ciple of	operat	ion and	perform	ance o	f induc	ction n	nachines.
5	To u	nderst	and the	e consti	ruction	, opera	tion of	specia	l mach	ines.					
COURS	E OU'	ГСОМ	1ES												
On the st	uccessf	ful con	npletio	n of the	e cours	e, stud	ents w	ill be a	ble to						
C01	Expla mach	ain th ines	e cons	structio	on, ch	aracter	istics	and aj	oplicati	ions of	DC		Unde	erstand	
CO2	Anal	yze the	e perfo	rmance	e of dif	ferent	types o	f DC n	nachine	es			Ana	alyze	
CO3	Expla	ain the	funda	mental	s and c	peratio	on of T	ransfor	mer				Unde	erstand	
CO4	Anal	yze the	e perfo	rmance	e of dif	ferent	types o	f Trans	sforme	r			Ana	alyze	
CO5	Expla mach	ain the	e cons	structio	on, ope	eration	of A	C mad	chines	and sp	pecial		Unde	erstand	
MAPPI	NG W	TH P	ROGI	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSC	PSO3
CO1	S	М	M	М	-	L	-	-	-	M	М	L	S	M	
CO2	M	S	-	L	L	-	-	L	L	-	S	-	S	M	
CO3	Μ	Μ	M	S	-	-	-	-	-	L	-	L	S	M	-

CO4	S	S	-	М	М	М	L	L	L	-	S	-	S	М	-
CO5	S	Μ	М	М	-	-	-	-	-	L	-	L	-	М	-

S- Strong; M-Medium; L-Low

SYLLABUS

D.C GENERATORS AND DC MOTORS

Principle of operation of DC Machines- EMF equation – Types of generators – Magnetization and load characteristics of DC generators, DC Motors – Types of DC Motors – Characteristics of DC motors – 3-point starters for DC shunt motor – Losses and efficiency – Swinburne's test – Speed control of DC shunt motor – Flux and Armature voltage control methods.

TRANSFORMERS

Principle of operation of single phase transformer – types – Constructional features – Phasor diagram on No Load and Load – Equivalent circuit, Losses and Efficiency of transformer and Regulation – OC and SC tests – Predetermination of efficiency and regulation.

THREE PHASE INDUCTION MOTOR

Principle of operation of three-phase induction motors – Slip ring and Squirrel cage motors – Slip-Torque characteristics – Efficiency calculation – Starting methods.

ALTERNATORS

Alternators – Constructional features – Principle of operation – Types - EMF Equation – Distribution and Coil span factors – Predetermination of regulation by Synchronous Impedance Method – OC and SC tests.

SPECIAL MOTORS

Principle of operation - Synchros-Synchronous reluctance motor -Stepper Motors - Switched reluctance motor-AC servomotor-AC tachometers- Shaded pole motors-Capacitor motors -Characteristics

TEXT BOOKS

1. "Introduction to Electrical Engineering "– M.S Naidu and S. Kamakshaiah, TMH Publ.1995

2." Basic Electrical Engineering" - T.K. Nagasarkar and M. S. Sukhija, Oxford University Press, 2005

3. "Electrical Machines" Er. R.K. Rajput, Laxmi Publications, 5th Edition 2016

REFERENCES

1. "Theory and Problems of basic electrical engineering" - I.J. Nagarath and D.P Kothari, PHI Publications 2016

2. "Principles of Electrical Engineering "- V.K Mehta, S. Chand Publications.2008

COURSI	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in

170	CSCC16	5		CL	OUD C	OMPU	TING				Categor	y L	Т	Р	Credit
											CC	3	0	0	3
PREA To study	MBLE y and ur	nderstar	nd the c	oncepts	in clou	d comp	outing a	nd appl	y them	practica	lly.				
PRER	EQUIS	ITE N	IL												
COUR	RSE OB	JECTI	IVES												
1.	To und	erstand	cloud c	computi	ng con	cepts.									
2.	To stuc	ly vario	us clou	d servic	æs.										
3.	To app	ly cloud	d compu	uting in	collabo	oration	with oth	ner serv	rices.						
4.	То Арр	oly clou	ud comp	puting s	ervices										
5.	To app	ly cloud	d compu	uting on	line.										
COUR	RSE OU	TCOM	1ES												
On the	success	sful con	npletion	of the	course,	studen	ts will t	be able	to						
CO1: A	ble to U	Understa	and basi	ics in C	loud Co	omputin	ıg						Unde	rstand	
CO2: A	Able to a	apply cl	oud coi	mputing	g conce	pts in re	eal time	:					Ар	ply	
СОЗ: А	ble to d	evelop	cloud c	omputi	ng proje	ects							Ар	ply	
CO4 : A	ble to a	pply clo	oud serv	vices									Ар	ply	
CO5: A	Able to a	collabor	rate clo	ud servi	ces wit	h other	applica	tions					Ар	ply	
MAPP	PING W	/ITH P	ROGR	AMM	E OUT	COME	S AND	PRO	GRAMI	ME SPI	ECIFIC (DUTCON	/IES		
COs	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	M	-	-	-	-	-	-	-	-	M	M	-
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO5	S	М	М	М	-	-	-	-	-	-	-	-	S	S	М
S- Stro	ng; M-l	Medium	n; L-Lo	W	1		1	1	<u>I</u>	1		1	1		

INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage –Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

TEXT BOOKS

1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

REFERENCES

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

COU	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	T.GEETHA	Assistant professor	CSE	geetha_kcs@yahoo.com

17(rscco			T		DOCI) а ълъ	IINC			Category	L	Т	Р	Credit
1/(SCC03			J	AVAI	NUGI		IIIIG			CC	3	0	0	3
PREA This co skills. activiti	MBLE ourse of Students es.	study l s will d	builds o lesign o	n the sl bject-or	cills gai	ned by applicat	student tions wi	s in Jav ith Java	va Fund and w	lamenta ill creat	ls and help e Java prog	s to adva grams us	ance Jav ing han	va prog ids-on,	gramming engaging
PRER NIL	EQUIS	ITE													
COUR	RSE OB	JECT	IVES												
1.	Under	stand f	fundame	entals of	f progra	mming	such a	s variat	oles, co	nditiona	l and iterat	ive exec	ution, r	nethod	s, etc.
2.	Under using	stand f class li	undame braries,	entals of etc.	f object	-oriente	ed prog	rammin	ig in Jav	va, inclu	iding defin	ing class	es, invo	oking	nethods,
3.	Be aw	vare of	the imp	ortant te	opics ar	nd princ	ciples of	f softwa	are deve	elopmer	nt.				
4.	Under	stand H	Event H	andling	and Sv	ving Co	ompone	nts.							
5.	Under	stand (Generic	Program	mming.										
COUR	RSE OU	TCON	1ES												
On suc	cessful	comple	etion of	the cou	rse, stu	dents w	ill be a	ble to							
CO1.Kn	owledge	e of the	structu	re and	model o	of the Ja	iva prog	grammi	ng lang	uage			Under	rstand	
CO2.Us	e the Ja	va prog	rammir	ng langu	age for	[.] variou	s progra	amming	g techno	ologies			Under	rstand	
CO3. De	evelop s	oftware	e in the	Java pr	ogramn	ning lar	nguage						Ap	ply	
CO4.Ev Java pro	aluate u grammi	ser req ng lang	uiremer guage ca	nts for s an meet	oftware user re	function quirem	onality 1 ents	required	d to dec	ide whe	ther the		Ana	lyze	
CO5.Ch knowled	oose an lge of pi	engine ogram	ering ap ming ar	pproach id know	to solv ledge o	ing pro of opera	blems, ting sys	Starting stems.	g from 1	the acqu	uired		Ар	ply	
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAM	ME SP	ECIFIC C	UTCON	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3
CO1	S	М	М	-	S	-	-	-	-	-	-	-	-	-	-
CO2	S	М	М	-	М	-	-	-	-	-	-	-	М	М	-
CO3	S	М	L	L	М	-	-	-	-	-	-	-	М	М	-
CO4	S	М	М	L	М	-	-	-	-	-	-	-	М	М	-
CO5	S	М	L	L	S	-	-	-	-	-	-	-	М	М	-
S- Stro	ong; M-N	Mediun	n; L-Lo	W											

BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalize method.

ARRAYS, STRINGS & OBJECTS

Arrays – Strings - Packages – Java-Doc comments – Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes - The Object class – Reflection – interfaces – object cloning – inner classes – proxies.

EVENTS & GRAPHICS PROGRAMMING

I/O Streams - Filter and pipe streams - Byte Code interpretation - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Graphics programming - Frame - Components - working with 2D shapes.

SWING & GENERIC PROGRAMMING

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components – exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics.

THREADS & SOCKET PROGRAMMING

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

TEXT BOOKS:

- 1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.
- 2. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000.
- 3. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999.

REFERENCES:

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.
- 3. C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd., 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs. R. Shobana	Assistant Professor (GII)	CSE	shobana@avit.ac.in
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

17CVEC08		R	REMOTE SENSING TECHNIQUES AND							Categ	gory	L	Т	Р	Credit
1/0	ECUO			A	PPLI	CATIC	ONS			EC(C	DE)	3	0	0	3
PREA Remote either n Positio orbit b and tra includi	PREAMBLE Remote sensing is the science and art of obtaining information about an object, area or phenomenon, by the use of either recording or real time sensing devices that are not in physical contact with the object. The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. These GPS satellites circle the earth twice a day in a very precise orbit and transmit signal information to earth. Remote sensing and GPS data are further used in numerous applications, including GIS data collection, surveying, and mapping.														
PREREQUISITE															
		NIL													
COUR	RSE OI	BJECT	FIVES												
1	Stude	nts wil	l learn	about	the lan	d use n	nappin	g techr	niques,s	ite suita	ability te	echnique	es		
2	2 Students will learn about the use of zone mapping for water bodies														
3	3 Students will learn about the use of mapping techniques for Agriculture and Earth sciences														
4	Stude	nts wil	l also l	earn al	oout the	e recen	t techn	iques u	used for	GPS s	ystem				
COUR	SE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	the co	ourse, s	tudent	s will b	e able	to			_		
CO1. I	Recolle	ct the f	fundam	entals	of phy	sics of	Remo	te sensi	ing and	concep	ts.		Re	emembe	r
CO2. Cosensing	Dutline g data i	the va	rious d ation ai	ata acq nd stora	uisitio age	n syste	ms and	d collec	ction m	ethods f	for remo	ote	Uı	nderstan	d
CO3.A	pply k	nowled	lge of s	satellite	es on v	arious	Civil E	Enginee	ering ap	plicatio	ons.			Apply	
CO4. U	Jtilize	the var	ious da	ata inpu	it meth	ods for	r mapp	oing						Apply	
CO5. 0	Creation	n of da	ta mod	els usi	ng rem	ote ser	sing te	echniqu	ies and	GPS				Apply	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND F	PROGE	RAMM	E SPEC	CIFIC (DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	L	-	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	L	-	-	-	-	-	-	-	-	-	L	L	-	М
CO4	S	L	-	L	L	S	-	-	L	_	-	-	L	L	L
CO5	S	L	L	-	L	-	_	-	L	L	L	-	L	L	L
S-Stro	ng; M-	Mediu	m; L-I	LOW				1				1	I	1	
SYLL	ABUS														

INTRODUCTION: Definition – Physics of remote sensing – electromagnetic radiation (EMR) – remote sensing windows – interaction of EMR with atmosphere, earth surface, soils, water and vegetation – platform and sensors – image interpretations.

LAND USE STUDIES:Definition of land use – land use / land cover classification – schemes and levels of classification systems with RS data – land use mapping – change detection – urban land use planning, site suitability analysis, transportation planning.

WATER RESOURCES: Areal assessment of surface water bodies – Capacity survey of water bodies – mapping of snow-covered areas – flood risk zone mapping – identification of groundwater potential zones, recharge areas – droughts, definition, drought assessment and management.

AGRICULTURE, SOIL AND FORESTRY: Crop inventory mapping – production estimation – command area monitoring – soil mapping – crop stress detection - estimation of soil erosion – forest types and density mapping – forest fire risk zone mapping.

EARTH SCIENCE: Lithology – lithological mapping – structural mapping – Geomorphology – nature and type of landforms – identification – use of remote sensing data for landslides – targeting mineral resources – Engineering geology and Environmental geology.

TEXT BOOKS:

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman., Remote Sensing and Image Interpretation. V Edn. John Willey and Sons (Asia) Pvt. Ltd., New Delhi, 2004
- 2. Lo. C.P.andA.K.W.Yeung, Concepts and Techniques of Geographic Information Systems. Prentice-Hall of India Pvt. Ltd., New Delhi, 2002

REFERENCES:

- 1. Chandra, A.M, GeoInformatics, New Age International (P) Limited, Publishers.
- 2. Fazal, Shahab, GISBasics, New Age International (P) Limited, Publishers.
- 3. Space Applications Centre. Manual for Forest mapping and Damage detection using satellite data, Report No.IRS-UP/SAC/FMDD/TN/16/90,1990, pp-253.
- 4. Sabins, F.F.Jr. Remote sensing principles and interpretation, W.H.Freeman& Co., 1978.
- 5. Manual of Remote Sensing Vol. II. American Society of Photogrammetry

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	J.KarthickRajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

17CVEC18	WIND ENGINEERING	Category	L	Т	Р	Credit
		EC(OE)	3	0	0	3

PREAMBLE

The course includes studies of sustainable development and energy sources. Basic mathematical and physical concepts will be covered. An introduction to prerequisites for wind power development including how a wind turbine works, planning for wind energy, environmental impact, location and economic aspects will be given. The phases of wind power projects is studied. Oral and written presentations in a scientific context will be discussed and practiced in the course. A site study visit to an operating wind farm is included.

PREREQUISITE

Nil

COURSE OBJECTIVES										
1 To learn about the forces generated on structures due to normal wind as well as gusts.										
2 To analyses the dynamic effects produced due to chimney,tower and silos										
3 To understand about the seismic design of various structures										
To analyses the application in design and its implementations										
To learn about the forces generated on structures due to normal wind as well as gusts.										
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
give an account of and analyse energy sources and their sustainability Understand										
2. identify and explain a wind power project's phases Apply										
Co3. identify and evaluate factors affecting wind energy development Apply										
Co4. analyse the siting conditions for wind power development Apply										
CO5. clearly present an individual or group assignment within wind power in oral or										
written form										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3										
CO1 L S S S - L S L L L L										
CO2 L S S L M S L L L L L										
CO3 S S S S L M L L L L L L										
CO4 L S L S L S L L L _ M										
CO5 S S S S S M L L L										
S- Strong; M-Medium; L-Low										
SYLLABUS										

INTRODUCTION :Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift.

EFFECT OF WIND ON STRUCTURES :Static effect – Dynamic effect – Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only)..

EFFECT ON TYPICAL STRUCTURES : Tail buildings – Low rise buildings – Roof and cladding – Chimneys, towers and bridges

APPLICATION TO DESIGN :Design forces on multistorey building, towers and roof trusses.

INTRODUCTION TO WIND TUNNEL: Types of models (Principles only) – Basic considerations – Examples of tests and their use.

TEXT BOOKS:

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

REFERENCE BOOKS:

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990.
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in		
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com		

1500011	n
1/CSPII	U

PREAMBLE

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

PRE F	PRE REQUISITE – NIL														
COUR	RSE OF	BJECT	IVES												
1.	Unde	rstand s	system	require	ments f	for mob	ile app	lication	IS						
2.	Generate suitable design using specific mobile development frameworks														
3.	Generate mobile application design														
4.	Implement the design using specific mobile development frameworks														
5.	Deploy the mobile applications in marketplace for distribution														
COUR	RSE OU	JTCON	MES												
On the	succes	sful cor	npletio	n of the	e course	e, stude	nts will	l be abl	e to						
CO1 .]	. Expose to technology and business trends impacting mobile applications Understand														
CO2 .U	2.Understand enterprise scale requirements of mobile applications Understand														
CO3.	O3. Familiarize in the Graphics used for Android application development Apply														
CO4. (CO4. Competent with the characterization and architecture of mobile applications Apply														
CO5. applica	Compe ation de	tent wi velopm	ith dest nent frat	igning meworl	and de k.	evelopi	ng mol	bile ap	plicatio	ns using	g one	Analyze			
MAPF	PING V	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAN	MME SI	PECIF	IC OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	l PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М	-	-	М	-	-	-	М	М	М	-
CO2	S	М	М	М	М	-	-	М	-	-	-	М	М	М	-
CO3	S	М	L	М	L	-	-	М	-	-	-	L	S	S	М
CO4	S	М	М	М	М	-	-	М	-	-	-	M M M I			М
CO5	S	М	М	М	L	-	-	М	-	-	-	L	М	М	М
S- Stro	S- Strong; M-Medium; L-Low											•	•		

SYLLABUS UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications – Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

REFERENCES

D

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Course	Course Designers:										
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in							
2.	Mrs. S. Leelavathy	Assistant Professor (G-II)	CSE	leelavathy@avit.edu.in							

17CSEC34			WE	B DESI	GN AN	ND MA	NAGE	MENT	1		Category	L	Т	P C	Credit
											EC	3	0	0	3
PREA To under design n	MBLE erstand	and lea	arn the	scriptin	g langu	lages w	ith desi	ign of v	veb app	olication	is. and ma	aintenance	e and ev	aluatior	n of web
PREREQUISITE NIL															
COURSE OBJECTIVES															
1	1 To introduce the student to the tools and facilities of web design														
2	To understand and learn the scripting languages with design of web applications														
3	3 To learn the maintenance and evaluation of Web design/development process, with Macromedia Dreamweaver as the primary Web development tool														
4	4 Topics covered include basic and enhanced site structure, local and remote site management, and optimization of Web graphics														
COUR	RSE OU	TCOM	1ES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able t	0						
CO1: A	Apply ar	n Inform	nation A	Architec	ture do	cument	t for a w	veb site				Apply			
CO2: C	Construc	et a web web ma	site that arketing	at confo g	orms to	the web	o standa	rds of t	oday an	id inclue	des e-	Analyze			
CO3: P	Perform	regular	web si	te maint	enance	(test, r	epair ar	nd chan	ge).			Analyze			
CO4: U	Jndersta	and the	princip	les of va	arious p	orocess	of Proje	ect man	agemen	ıt		Apply			
MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC (DUTCON	1ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	-	М	-	-	-	-	-	-	-	М	Μ	Μ
CO2	S	Μ	Μ	-	L	-	-	-	-	-	S	М	M	M	M
CO3	S	M	M	-	Μ	-	-	-	-	-	М	М	M	M	M
<u>CO4</u>	S	M	S	-	М	-	-	Μ	-	-	S	М	М	M	M
S- Stro	S- Strong; M-Medium; L-Low														

SITE ORGANIZATION AND NAVIGATION

User Centered Design–Web Medium–Web Design Process–Basics of Web Design –Introduction to Software used for Web Design – ADOBE IMAGE READY, DREAM WEAVER, FLASH – Evaluating Process – Site Types and Architectures – Navigation Theory – Basic Navigation Practices – Search – Sitemaps.

ELEMENTS OF PAGEDESIGN

Browser Compatible Design Issues-Pages and Layout – Templates – Text – Color – Images – Graphics and Multimedia – GUI Widgets and Forms – Web Design Patterns – STATIC pages: Slice– URL in ADOBE IMAGE READY. Creation and Editing of site map – Layer, Tables, Frame set, - CSS style – Forms –Tools like Insert, Rollover etc., in DREAM WEAVER

SCRIPTING LANGUAGES AND ANIMATION USING FLASH

Client side scripting :XHTML – DHTML – JavaScript – XML Server Side Scripting: Perl–PHP– ASP/JSP Designing a Simple Web Application - Introduction to MACROMEDIA FLASH, Importing Other File Formats to Flash – Saving and Exporting Flash Files, Frame by Frame Animation–Motion Tweening – Shape Tweening.

PRE-PRODUCTION MANAGEMENT

Principles of Project Management – Web Project Method – Project Road Map – Project Clarification – Solution Definition – Project Specification – Content – Writing and Managing Content.

PRODUCTION, MAINTENANCE AND EVALUATION

Design and Construction – Testing, Launch and Handover – Maintenance – Review and Evaluation – **Case Study:** Using the Skills and Concepts Learn with the ADOBE IMAGE READY, DREAM WEAVER, FLASH, and Scripts, Develop Portfolios in the Form of Web Pages which have to be uploaded in Free Public Domain. **TEXT BOOKS**

1. Themas A. Powell, —The Complete Reference–Web Design^{II}, Tata McGraw Hill, Third Edition, 2003. 2. Ashley Friedlein, —Web Project Management^{II}, Morgan Kaufmann Publishers, 2001.

3.H.M. Deitel, P.J. Deitel, A.B. Goldberg, —Internet and World Wide Web – How to Programl, Third Edition, Pearson Education, 2004.

REFERENCES

1.Joel Sklar, —Principles of Web Designl, Thomson Learning, 2001.

2.Van Duyne, Landay and Hong, —The Design of Sites: Patterns for Creating Winning Websites, Second Edition, Prentice Hall, 2006.

3.Lynch, Horton and Rosenfeld, —Web Style Guide: Basic Design Principles for Creating Websites^{II}, Second Edition, Yale University Press, 2002.

S. No.	Name of the Faculty	Designation	Department	Mail ID		
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in		
2	R.Bharanidharan	Professor	CSE	bharanidharan@vmkvec.edu.in		

17ATCC04	AUTOMOTIVE ELECTRICAL AND	Category	L	Т	Р	Credit
	ELECTRONICS SYSTEMS	CC	3	0	0	3
D 11						

Preamble

Automotive electrical and electronic systems used in road vehicles, enable study analyze and apply the concepts of various electrical and electronics component such as battery alternator ignition system and other engine management systems.

Prerequisite

Nil

Course Objectives

1. To perform the concepts of battery and charging systems.
2. To compilet the knowledge of starting systems in the vehicle.
3. To employ the knowledge in the application of various types of charging system & lighting system.

4. To demonstrate the application and knowledge of fundamental of automotive electronics.

5. To employ the application and knowledge of sensors and actuators.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Outline the concepts of Electrical and Electronics System	Understand
CO2. Summarize the various concept of starting systems.	Understand
CO3. Apply the various types of charging system & lighting system.	Apply
CO4. Identify the application automotive electronics.	Apply
CO5. Compare the sensors and actuators.	Apply

Mapp	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	S	Μ	Μ	L	-	-	-	-	-	-	-	L	L	-	-
2.	S	Μ	Μ	L	-	-	-	-	-	-	-	L	L	-	-
3.	S	S	S	М	-	-	-	-	-	-	-	Μ	L	-	Μ
4.	S	S	S	М	-	-	-	-	-	-	-	Μ	L	Μ	-
5.	S	S	S	Μ	-	-	-	-	-	-	-	М	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, capacity and efficiency of batteries. Various tests on battery condition, charging methods. Details of modern storage batteries.

STARTING SYSTEM

Condition of starting Behavior of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Care & maintenance of starter motor, Starter switches.

CHARGING SYSTEM & LIGHTING SYSTEM

Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cutout. Voltage and current regulators, compensatedvoltage regulator, alternators principle and constructional aspects and bridgerectifiers, new developments. Lighting system: insulated and earth return system, details of head light and sidelight, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.

TEXT BOOK:

- 1. Kholi, P.L., Automotive Electrical Equipment, Tata McGraw-Hill Co. Ltd., New Delhi, 2004.
- 2. Judge, A.W., Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 2004.
- 3. Younng A.P & Griffiths L, "Automobile Electrical and Electronic Equipments", English Languages Book Society & New Press.
- 4. Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control system", Prentice Hall Inc., New Jersey.

REFERENCES:

- 1. Vinal, G.W., Storage Batteries, John Wiley & Sons Inc., New York, 1985.
- 2. Crouse, W.H., Automobile Electrical Equipment, McGraw Hill Book Co. Inc., New York, 1980.
- 3. Spreadbury, F.G., Electrical Ignition Equipment, Constable & Co. Ltd., London, 1962.
- 4. Automotive Hand Book, fifth edition, Robert Bosch, Bently Publishers, 2003.

Course Designers:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	N. Shivakumar	Assistant. Professor GRII	Auto / AVIT	shivakumar@avit.ac.in

17CSEC09			ETHICAL HACKING							Category	/ L	Т	Р	Credit	
											EC	3	0	0	3
PREA To ana	MBLE	e basic	conce	ots of s	ecurity	and ha	cking p	process							
PRER NIL	PREREQUISITE NIL														
COURSE OBJECTIVES															
1	To understand Technical foundation of cracking and ethical hacking														
2	To identify Aspects of security, importance of data gathering, foot printing and system hacking														
3	To un	dersta	nd eval	uation	of com	puter s	ecurity								
4	To understand Practical tasks will be used to re-enforce and apply theory to encourage an analytical and problem based approach to ethical hacking														
5	5 To discuss about security tools and its applications														
COUR	COURSE OUTCOMES														
On the	succes	sful co	mpletio	on of th	e cours	se, stud	lents w	ill be a	ble to						
CO1: I compro	dentify omise a	and ar target	nalyse t system	he stag	es an e	thical h	nacker	require	s to tak	e in ord	er to	Underst	and		
CO2: I	dentify	tools a	and tecl	nniques	to car	ry out a	a peneti	ration t	esting.			Underst	and		
CO3: 0	Criticall	y analy	yze sec	urity te	chniqu	es used	l to pro	tect sys	stem an	nd user d	lata.	Apply			
CO4: I of polic	Demons cy and s	strate systematics	ystema y in a co	tic und ompute	erstand r syster	ing of 1 m.	the con	cepts c	of secur	ity at the	e level	Apply			
CO5: 7	Го appl	y infor	mation	securit	y featu	res in r	eal tim	e				Apply			
MAPI	PING V	VITH	PROG	RAMN	AE OU	TCON	MES A	ND PF	ROGR	AMME	SPECI	FIC OU	ТСОМ	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO3
CO1	М	Μ	-	-	-	-	S	-	-	-	М	Μ	Μ	Μ	Μ
CO2	Μ	Μ	S	Μ	-	-	-	-	-	-	L	М	М	Μ	Μ
CO3	М	Μ	Μ	М	-	Μ	-	L	-	-	L	-	S	S	S
CO4	М	S	M	-	-	Μ	-	- -	-	М	-	M	M	M	M
CO5	M	M	-	-	S	Μ	-	L	-	-	М	M	М	M	M
S- Stro	ong; M-	Mediu	m; L-L	ow											

SYLLABUS INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HÂCKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006. **REFERENCES**

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

COUR	COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.R.Jaichandran	Associate Professor(G-II)	CSE	rjaichandran@avit.ac.in							
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in							

17CSEC11				GR	EEN C	OMPU	TING			(Category	L	Т	P C	Credit
											EC	3	0	0	3
PREA	MBLE	1 1	. 1					1 00	1 1						
To acqu PREP	PREREOUNSITE														
NIL	NIL														
COUR	COURSE OBJECTIVES														
1	To acquire knowledge to adopt green computing practices														
2	To minimize negative impacts on the environment														
3	To lea	rn abou	it energ	y savin	g practi	ces									
4	To learn about green compliance. And implementation using IT														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1: E	Explain t	he sign	ificanc	e know	ledge to	adopt	green c	omputii	ng pract	tices		Understa	and		
CO2: I environ	Design a ment	nd deve	elop the	green	asset us	sed to n	ninimiz	e negat	ive imp	acts on t	he	Apply			
CO3: I optimiz	dentify a the	an appr cost of	opriate data ce	cooling nter ope	techno erations	logies	and infr	astructu	ure for			Apply			
CO4: N	Aake use	e of an te	knowle	dge abo	out ener	gy savi	ng prac	tices ,tł	ne impa	ct of e-w	aste	Apply			
CO5: A	Analyze	about g	green co	mplian	ce, imp	lementa	ation us	ing IT a	and deri	ive the c	ase	Analyze			
MAPP	Study. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	S	-	-	-	М	-	-	-	-	-	S	S	S
CO2	S	S	М	-	L	-	S	S	-	М	-	М	S	S	S
CO3	S	Μ	М	-	-	М	S	М	-	-	-	-	Μ	Μ	Μ
CO4	S	S	-	-	-	-	S	S	-	M	-	Μ	Μ	Μ	Μ
CO5	S	Μ	М	-	-	S	Μ	-	Μ	-	Μ	S	М	М	Μ
S- Stro	ng; M-N	Aedium	n; L-Lo	W											

SYLLABUS FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Systems Seamless Sharing Across. Collaborating and Cloud Computing, Virtual Presence.

GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligence^I,CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with IT^I, John Wiley and Sons, 2010.

REFERENCES

1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journeyl, Shoff/IBM rebook, 2011.

2. John Lamb, —The Greening of ITI, Pearson Education, 2009.

3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industryl, Lulu.com, 2008.

co	URSE DESIGNERS			
S. N	Io. Name of the	Designation	Department	Mail ID
	Faculty			
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

170	17CSEC32 VIRTUAL REALITY Categor							Category	L	Т	P C	redit			
											EC	3	0	0	3
PREA	PREAMBLE This source provides a detailed understanding of the concepts of Virtual Reality and its application														
PRER	PREREQUISITE														
NIL															
COUR	COURSE OBJECTIVES														
1	To Le	arn Ge	ometric	modeli	ng and	Virtual	enviro	nment							
2	To Learn Virtual Hardware and Software														
3	3 To Learn Virtual Reality applications														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1 : D	CO1: Differentiate between Virtual, Mixed and Augmented Reality platforms. Understand														
CO2: I especia	dentify a lly from	appropi	riate des siologic	sign me al persp	thodolo ective.	ogies fo	r imme	rsive te	chnolog	y devel	opment,	Apply			
CO3: [Demonst	rate for	undatio	nal liter	acy in o	lesignii	ng gami	ing syst	ems			Apply			
CO4: (Categori	ze the b	penefits	/shortco	omings	of avail	able im	mersiv	e techno	ology pl	atforms.	Analyze			
СО5: Т	To apply	the VI	R conce	pts to v	arious a	applicat	ions					Apply			
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROC	GRAMN	ME SPI	ECIFIC (DUTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	M	М	М
CO2	S	Μ	L	L	М	-	-	-	-	-	-	L	Μ	М	Μ
CO3	S	М	L	-	Μ	-	-	-	-	-	-	Μ	M	M	М
CO4	S	L	L	L	Μ	-	-	-	-	-	-	М	M	M	Μ
CO5	S	Μ	L	-	Μ	-	-	-	-	-	-	L	M	M	Μ
S- Stro	ng; M-N	Mediun	n; L-Lo	W											

SYLLABUS INTRODUCTION

Virtual Reality & Virtual Environment : Introduction – Computer graphics – Real time computer graphics – Flight Simulation – Virtual environments –requirement – benefits of virtual reality- **3D Computer Graphics** : Introduction – The Virtual world space – positioning the virtual observer – the perspective projection – human vision – stereo perspective projection – **3D** clipping – Colour theory – Simple **3D** modelling – Illumination models – Reflection models – Shading algorithms

GEOMETRIC MODELLING

Geometric Modelling: Introduction – From 2D to 3D – 3D space curves – 3D boundary representation - **Geometrical Transformations**: Introduction – Frames of reference – Modelling transformations – Instances – Picking – Flying – Scaling the VE – Collision detection - **A Generic VR system**: Introduction – The virtual environment – the Computer environment – VR Technology – Model of interaction – VR System

CONTENT CREATION AND INTERACTION ISSUES

Gestalt perceptual organization - real world content - field of view - paradigm shift from real environment to virtual environment - reusing existing content - transition to VR content Human factors : Direct Vs Indirect Interaction - Modes and flow - Input device characteristics - viewpoint and control patterns.

DESIGN ISSUES

Optimizing performance - optimizing target hardware and software - **VR Hardware** : Introduction – sensor hardware – Head-coupled displays –Aquatic hardware – Integrated VR systems-**VR Software**: Introduction – Modelling virtual world –Physical simulation- VR toolkits - multiplayer environment - multiplayer networking architecture.

APPLICATION

Engineering – Entertainment – Science – Training – classroom.

TEXT BOOKS

1. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2002

2. Jason Jerald, "The VR book: Human centered design for virtual reality", CRC Press, 2015

REFERENCES

1. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.

2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", WileyInterscience,1 Edition,1994.

3. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application, and Design", Morgan Kaufmann, 1st Edition,2002.

4. Jonathan Linowes, "Unity Virtual Reality Projects- Explore the world of virtual reality by building immersive and fun VR Projects using Unity 3D", Packt Publishing, 2015.

COURSE DESIGNERS	
------------------	--

S. No.	Name of the Faculty	Designation	Department	Mail ID												
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in												
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in												
170	SCC01			ЛАТ	л сті	ыст	UDFS		(CATEG	ORY	L	Т	Р	CR	EDIT
------------------------	---	-------------	-----------	-----------	----------	----------	-----------	---------	-------	-----------	---------	--------	-------	---------	---------	--------
1/C	SCCU	L		DAT	ASII	NUCI	UKES			CC	2	3	0	0		3
PREA This struct	AMBLI course a ures	E aims a	t unde	rstandin	g the l	pasic c	oncepts	in prog	gramm	ning stru	ctures,	linear	struc	tures a	and non	linear
PREI NIL	RQUIS	ITE														
COU	RSE O	BJEC	FIVES	•												
1.	To remember and understand the basic concepts in linear structures															
2.	To lear	rn abou	it tree s	structure	s.											
3.	To und	lerstan	d about	t balance	ed trees	8										
4.	To lear	rn abou	ıt hashi	ing and s	sets.											
5.	To lear	rn and	unders	tand abo	out grap	ohs										
COU	URSE OUTCOMES															
On th	n the successful completion of the course, students will be able to															
CO1.	Remer	nber th	e basic	c concep	ts in l	inear st	tructures				Un	dersta	and			
CO2.	Learn a	about ti	ee stru	ctures a	nd tree	traver	sals				Ap	ply				
CO3.	Unders	tand al	oout ba	lanced t	rees						Ap	ply				
CO4.	Learn	about l	nashing	g and set	s.						Ap	ply				
CO5.	Learn	and un	derstar	nd about	graphs	8					Ap	ply				
MAP	PING V	WITH	PROC	GRAMN	AE OU	JTCO	MES AN	D PRO	DGRA	AMME S	SPECIE	FIC C	DUTC	OMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	М		S	S	S
CO2	S	М	М	М	М	-	-	-	-	-	-	М		S	S	S
CO3	S	М	L	М	М	-	-	-	-	-	-	M		S	S	М
CO4	S	М	М	М	М	-	-	-	-	-	-	L		S	S	М
CO5	S	М	L	М	М	-	-	-	-	-	-	М		S	S	М
S- Str	Strong; M-Medium; L-Low															

SYLLABUS Linear Structures

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

Tree Structures

Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.

Balanced Trees

AVL Trees - Splay Trees - B-Tree - heaps - binary heaps - applications of binary Heaps .

Hashing and Set

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

TEXT BOOKS:

1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education.

REFERENCES:

- 1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First Edition Reprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition

COU	RSE DESIGNERS			
S.	Name of the Faculty	Designation	Department	Mail ID
No.				
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam@vmkvec.edu.in

17CSCC02	OBJECT ORIENTED	Category	L	Т	Р	Credit
	PROGRAMMING	CC	3	0	0	3

PREAMBLE

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions.

PRERQUISITE Nil **COURSE OBJECTIVES** To learn about the syntax and semantics of C++ programming language 1. 2. To learn about the concepts of object oriented programming. 3. To determine how to reuse the code, Constructors and member functions 4. To Analyse how to reduce the coding by applying overloading concepts 5. To Analyse how to reuse the code, how to verify and validate the coding **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1. Construct object-oriented programs for a given scenario using the concepts of Apply abstraction, encapsulation, message-passing and modularity CO2. Construct object-oriented programs for a given application by using Apply constructors CO3. Develop object-oriented programs for a given application using the concepts of Analyze compile-time and run-time polymorphism CO4. Develop object-oriented applications through inheritance concepts Analyze CO5. Construct object-oriented applications for a given scenario using files, Sting Analyze handling and to handle exceptions MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO4 PO3 PO10 COS PO1 PO2 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PSO1 PSO2 PSO3 Μ Μ Μ М М L М Μ CO1 М М Μ М М М L М М CO2 -_ CO3 М М S М S М L М Μ М Μ М --М L М М CO4 S S _ _ _ -S М М М М L М М М Μ CO5 S- Strong; M-Medium; L-Low

INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

OBJECT INITIALIZATION AND FRIEND FUNCTION

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

OVERLOADING AND GENERIC PROGRAMMING

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keyword- limitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

INHERITANCE AND VIRTUAL FUNCTION

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function.

EXCEPTION HANDLING AND STREAMS

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file- file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

TEXT BOOKS:

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. Edition, 2008.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

REFERENCES:

1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

COUR	COURSE DESIGNERS												
S.No	Name of the faculty	Designation	Department	Mail Id									
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in									
2.	Mr.S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in									

17CS0	CC03	DAT	TABAS	E MAN	NAGEN	AENT :	SYSTE	м	Cate	gory	L	Т	Р	Cr	edit
									С	С	3	0	0		3
PREAM This co Manager effective environm	IBLE: urse ain ment Sys designi nent.	ns at f stems, ng of	facilitat the met relation	ing the hod an al data	e stude d mode lbase a	nt to u el to sto nd how	understa ore data the sy	nd the and he stem r	e vario ow to i nanage	us conce manipulat s the cor	pts and te them ncurrent	functi througl usage	onalitie n query of data	es of I langua a in mu	Database ages, the alti user
PRERE NIL	EQUISI	TE:													
COURS	SE OBJ	ECTI	VES												
1	Descrit	be a rela	ational	databas	e and o	bject-or	riented d	latabas	e.						
2	Create,	mainta	in and	manipu	late a re	elationa	l databa	se usin	g SQL.						
3	Descrit	e ER r	nodel a	nd norn	nalizati	on for d	atabase	design	c	1.	• .	1			
4	Examir	e issue	s in dat	a storag	ge and c	juery pi	rocessin	g and c	an forn	nulate app	propriate	solutio	ons.		
5	Design	and bu	illd data	ibase sy	stem Ic	or a give	en real w	vorld p	roblem	•					
COUR: On the (COURSE OUTCOMES														
CO1 III	successi	ul coll	ipieuoi	1 OI the	e cours	e, stude	ents wil	$\frac{1}{2}$ de at	$\frac{10}{10}$				TT 1	. 1	
		ine data											Unde	rstand	
and relat	ional land	man1pu guages	late the	relatio	nal data	abase us	sing Stru	ictured	Query	Languag	e		Ар	ply	
CO3. Do constrair	evelop a nts like in	normal ntegrity	lized da v and va	tabase 1 lue con	for a giv straints	ven app	lication	by inc	orporat	ing variou	15		Ар	ply	
CO4. Ap	ply conc	currenc	y contro	ol & rec	covery 1	mechan	ism for o	databas	se probl	lems.			Ap	ply	
CO5. Co	nstruct d	lata str	uctures	like ind	lexes ar	nd hash	tables for	or the f	ast retri	ieval of d	ata.		Ap	ply	
MAPPI	NG WI	TH P	ROGR	RAMM	IE OU'	ГСОМ	IES AN	ND PR	OGRA	AMME	SPECI	FIC O	UTCO	OMES	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	М	S	М	M	М
CO2	М	М	М	L	М	-	-	-	-	-	М	М	М	М	М
CO3	М	М	S	М	М	-	-	-	-	-	М	L	М	М	М
CO4	S	М	М	М	L	-	-	-	-	-	М	М	М	М	М
CO5	S	М	М	М	М	-	-	-	-	-	М	М	М	М	М
S- Strong	S- Strong; M-Medium; L-Low														

SYLLABUS INTRODUCTION

Database System Applications - Views of data - Data Models - Database Languages - Modification of the Database - Database System Architecture - Database users and Administrator- Introduction to relational databases - Structure of Relational Databases - Entity-Relationship model (E-R model) - E-R Diagrams.

RELATIONAL APPROACH

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals -Structure of SQL Queries - SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases..

DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form- Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery -Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols -Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing -Query Processing - Catalogue Information for Cost Estimation – Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, McGraw-Hill Education; 6 edition, 2010).

REFERENCES:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson India; 7th edition, 2017, 2017).
- 2. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Carlos Coronel, Steven Morris, "Database Systems Design, Implementation and Management, 13th Edition, Cengage Learning; 13th edition, 2018).

COURSE	COURSE DESIGNERS												
S. No.	Name of the faculty	Designation	Department	Mail Id									
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@vmkvec.edu.in									
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in									

170	17CSEC06 CRYPTOGRAPHY AND NETWORK Category										L	Т	P C	Credit	
					SEC	URITY					EC	3	0	0	3
PREAT	MBLE erstand	the con	cents in	crypto	oranhy	and net	work se	ecurity	and the	ir applic:	ations in	real time	г – Т	1	
10 unu	cistand		cepts in	rerypto	graphy		WOIK S	curry			ations in	icai time			
PRER NIL	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the ba	asic con	cepts ir	n unders	standing	g crypto	graphy	and net	work sec	urity			
2	To kn	ow abo	ut vario	ous encr	yption	techniq	ues.								
3	To un	derstan	d the co	oncept o	of Publi	c key cı	ryptogra	aphy.							
4	To stu	ıdy abo	ut mess	age aut	hentica	tion and	l hash f	unction	S						
5	To im	part kn	owledg	e on Ne	twork s	security									
COUR	SE OU	TCOM	IES												
On the	success	ful con	opletion	of the	course.	student	s will h	be able t	0						
CO1: (Classify	the syn	nmetric	encryp	tion tec	hniques	6					Understa	and		
CO2: I	llustrate	variou	s Public	e key cr	yptogra	phic te	chnique	es				Apply			
CO3: E	Evaluate	the aut	hentica	tion and	l hash a	lgorith	ms.					Apply			
CO4: [Discuss a	authent	ication	applicat	ions							Apply			
CO5: S	ummari	ize the	intrusio	n detec	tion and	l its sol	utions t	o overc	ome the	e attacks		Analyze			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	М	I	I	-	-	-	-	М	М	М	М
CO2	S	Μ	L	-	Μ	-	-	-	-	-	-	М	М	-	М
CO3	S	Μ	L	-	М	-	-	-	-	-	-	Μ	М	Μ	Μ
CO4	S	Μ	L	-	М	-	-	-	-	-	-	Μ	-	М	М
CO5	S	L	L	-	М	-	-	-	-	-	-	М	М	Μ	Μ
S- Stro	ng; M-N	Medium	n; L-Lo	W											

INTRODUCTION

Security trends – Attacks and services – Classical crypto systems – Different types of ciphers – LFSR sequences – Basic Number theory – Congruences – Chinese Remainder theorem – Modular exponentiation – Fermat and Euler's theorem – Legendre and Jacobi symbols – Finite fields – continued fractions.

METHODS

 $Simple \ DES - Differential \ cryptanalysis - DES - Modes \ of \ operation - Triple \ DES - AES - RC4 - RSA - Attacks - Primality \ test - factoring$

TECHNIQUES

Discrete Logarithms – Computing discrete logs – Diffie-Hellman key exchange –ElGamal Public key cryptosystems – Hash functions – Secure Hash – Birthday attacks -MD5 – Digital signatures – RSA – ElGamal – DSA.

AUTHENTICATION

Authentication applications – Kerberos, X.509, PKI – Electronic Mail security – PGP,S/MIME – IP security – Web Security – SSL, TLS, SET.

SECURITY AND FIREWALLS

System security - Intruders - Malicious software - viruses - Firewalls - Security Standards

TEXT BOOKS

1. Dr. S. Bose and Dr.P. Vijayakumar, "Cryptography and Network Security", First Edition, Pearson Education, 2016.

2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson, 2007.

3. William Stallings, "Cryptography and Network Security Principles and Practices", Pearson/PHI, 6th edition, 2013.

REFERENCES

1. W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition, 2007.

2. Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing Third Edition – Prentice Hall of India, 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in

17DA	IEC09 DESIGN OF MEDICAL DEVICES											y L	Т	P C	Credit
	IECU9		L	ESIG	N OF 1	VIEDI	CAL I	JEVIC	E 9		EC-PC	3	0	0	3
PREA This c provid initial	PREAMBLE This course will offer students exposure to the core concepts of the global medical device regulatory framework and provide a foundation for the practical application. It includes all elements of the device product lifecycle from idea to initial market entry, sustaining activities and post-market activities.														
PRER	PREREQUISITE – NIL														
COUF	SE OB	JECTI	VES												
1	To un	derstan	d the po	ost-mar	keting r	equirer	nents as	ssociate	d with	medical o	devices.				
2	To un	derstan	d the ne	ecessary	v steps t	o take a	an idea	to a pro	ototype.						
3	To fol	low a c	letermiı	nistic er	igineeri	ng desi	gn proc	cess to c	create n	ew produ	icts.				
4	To ap	ply eng	ineering	g theory	to prac	ctice.									
5	To per	rform r	isk asse	ssment	and co	unterme	easure c	levelop	ment.						
COUF	URSE OUTCOMES														
On the	the successful completion of the course, students will be able to														
CO1.	Discus	s the no	ecessar	y steps	to take a	an idea	to a pro	ototype.				1.1	Und	erstand	
CO2.	techni	e funda ques.	mental	design	princip	oles, m	achine	elemen	ts, mar	lufacturii	ng and a	ssembly	App	ly	
CO3.	Analyz	ze risk	manage	ment co	oncepts	into the	e qualit	y mana	gement	system.			Ana	yze	
CO4.	Assess type.	the me	edical d	evice re	egulator	ry fram	ework f	for any	given c	ountry b	ased upor	n device	Eval	uate	
CO5.	Create	potent	ial regu	latory p	athway								Crea	te	
MAPF	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC O	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М								М			М	S	М	М
CO2	S	М							М			М	S	М	М
CO3	S	М	М	L		М		L	М			S	S	М	М
CO4	S	S	М	М	М	S		М	S		М	S	S	S	М
CO5	S	S	S	М	М	S		М	S		М	S	S	S	S
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION TO MEDICAL DEVICES AND MEDICAL DEVICE REGULATIONS

Medical Device Classification, Bioethics and Privacy, Biocompatibility and Sterilization Techniques, Design of Clinical Trials, Design Control & Regulatory Requirements.

INTRODUCTION TO SPECIFIC MEDICAL TECHNOLOGIES

Biopotential measurement (EMG, EOG, ECG, EEG), Medical Diagnostics (In-vitro diagnostics), Medical Diagnostics (Imaging), Minimally Invasive Devices, Surgical Tools and Implants.

MEDICAL DEVICES STANDARD AND INTELLECTUAL PROPERTY

Standard-ISO, IES, Intellectual Property - Patents, Copy rights, Trademarks, Trade secrets.

HARDWARE AND SOFTWARE DESIGN

Hardware design, Hardware risk analysis, Design and project merits, Design for six sigma, software design, software coding, software risk analysis, software metrics.

DESIGN TRANSFER AND MANUFACTURING

Transfer to manufacturing, hardware manufacturing, software manufacturing, configuration management, documents and deliverables.

TEXT BOOKS:

- 1. Richard Fries, "Reliable Design of Medical Devices", CRC Press, 2nd Edition, 2006.
- 2. Paul H. King, Richard C. Fries, Arthur T. Johnson, "Design of Biomedical Devices and Systems", Third Edition, ISBN 9781466569133.

REFERENCES:

- 1. John G. Webster (ed), "Medical Instrumentation: Application and Design", 2007.
- Peter J. Ogrodnik, "Medical Device Design: Innovation from Concept to Market", Academic Press Inc; 1st Edition (2012), ISBN-10: 0123919428

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in
3	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

17RN	1EC02	EC02 BIOTELEMETRY									Category	y L	Т	P 0	Credit
1701					DICI		112 I K	1			EC-PS	3	0	0	3
PREA To stud	PREAMBLE To study the overall concept of a Biotelemetry system and the concept of signal transmission.														
PRER	PREREQUISITE – NIL														
COUR	COURSE OBJECTIVES														
1	To stu	idy the	basic co	oncepts	and the	e princij	ples use	ed in a 🛛	Felemet	ry systen	n.				
2	To stu	idy the	buildin	g block	s used t	o make	a elect	rical tel	emetry	system.					
3	To stu	dy the	basic co	ompone	nts of t	ransmit	ting and	d receiv	ving tec	hniques.					
4	To kn	ow abo	ut how	optical	fibers a	ire used	in sign	nal trans	smissio	n.					
5	To un	derstan	d the re	al time	applica	tion in	bioteleı	metry.							
COUR	JURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	Discuss	about t	he basic	e inform	nation a	bout Te	elemetry	y syster	n.				Und	erstand	
CO2. I	Describe	e the kn	owledg	e about	design	of Elec	ctrical T	Telemet	ry Syste	ems.			Und	erstand	
CO3. I	Demons	trate the	e differ	ent type	es of mo	odulatio	n techn	iques.					App	ly	
CO4. <i>A</i>	Analyze	the imp	plemen	tation o	f optica	l fibers	in telei	metry s	ystem.				Ana	lyze	
CO5. V	Validate	the hea	althcare	system	using '	Teleme	try syst	em.					Eval	uate	
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М									L		М	М	М	М
CO2	М									L		М	М	М	М
CO3	S		L	L		L			М	М		S	М	М	S
CO4	S	М	L	L	М	М	L	М	М	S		S	S	S	S
CO5	S	S	М	L	М	S	М	М	S	S		S	S	S	S
S- Stro	- Strong; M-Medium; L-Low														

INTRODUCTION

Fundamental concepts – Significance, Principle, functional blocks of Telemetry and Telecontrol system- Methods of telemetry – Electrical, Pneumatic, Hydraulic and Optical Telemetry – State of the art-Telemetry standards.

ELECTRICAL TELEMETRY

Electrical Telemetry – Current Systems – Voltage Systems – Synchro Systems – Frequency systems – Position and Pulse systems – Example of a landline telemetry system.

RADIO TELEMETRY SYSTEM

Block diagram of a Radio Telemetry system – Transmitting and receiving techniques – AM, FM, PM, Multiplexing and demultiplexing – Transmitting and receiving techniques – Digital coding methods – Advantages of PCM, PWM, PM, FSK – Delta modulation – coding and decoding equipment – Example of a radiotelemetry system.

OPTICAL TELEMETRY SYSTEM

Optical fibers for signal transmission – Sources for fiber optic transmission – Optical detectors – trends in fiber– optic device development – Example of an optical telemetry System.

APPLICATION OF BIOTELEMETRY

Use of computers in distance mode of healthcare delivery, Web technology, Satellite communication systems; hypertext, voice & image transfer protocols, Medical image scanning, Data compression and Transfer, Capturing of medical signals, Analog to digital conversion, Video conferencing, Remote sensing, Rural primary setups, Referral and Super specialty centers, Societal medico legal aspects, Networking (local, national & global).

TEXT BOOKS

- 1. D.Patranabis, "Telemetry principles", Tata Mcgraw Hill Publishers.
- 2. Marilyn J. Field, "Telemedicine: A Guide to Assessing Telecommunications for Health Care", National Academic Press, 1996.

REFERENCE

1. Charles J. Amlaner, David W. Macdonald, "A Handbook on Biotelemetry and Radio Tracking", Pergamon Press; 1st Edition (January 1, 1980).

COUR													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in									
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in									

17BMEC21

MEDICAL SIMULATION IN LIFE SUPPORTING DEVICES

PREAMBLE

The purpose of the course on medical simulation and life supporting device for biomedical engineering students is to get practical knowledge in operating basic life supporting devices under emergency condition.

PREREQUISITE:NIL

COURSE OBJECTIVES

1	To understand the structure and function of heart and brain.
2	To learn the various techniques available for deployment in patient suffering from respiratory emergency.
3	To operate and trouble shoot mechanical ventilator in a patient.
4	To provide hands on training on life supporting instruments.
5	Explain the use of ultrasound in critical cardiovascular and respiratory diseases and trauma diagnosis.

COURSE OUTCOMES

On the successful completion of the course, students will be able toCO1. Explain anatomy and physiology of the heart and demonstrate various lifesaving technique
used under cardiac arrestUnderstandCO2. Describe various techniques available for deployment in patient suffering from respiratory
emergencyUnderstandCO3. Illustrate the Initiate, operate and troubleshoot the ventilator.ApplyCO4. Outline various arrhythmias that can be treated by life supporting device and approach
algorithmically towards management of these patientsAnalyzeCO5. Analyze life supporting devicesAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М		L	L		L		Μ	L			L	М		М
CO2	М		L	L		L		М	L			L	М		М
CO3	S	Μ	М	М	М	М		М	М			М	S		S
CO4	S	М	М	S	М	М		М	S			М	S	М	S
CO5	S	М	М	S	М	S		М	S			М	S	М	S
S- Stro	ng; M-N	Medium	n; L-Lo	W											

BASIC LIFE SUPPORT

Anatomy and physiology of heart, Cardiogenic shock complicating acute coronary syndrome, CPR practice using mannequin, AHA BLS guidelines and practice, Automatic external Defibrillator, Defibrillator practice and troubleshooting.

ANALYZING ARRHYTHMIAS FOR LIFE SUPPORT

Description of ECG arrhythmias-an overview, Tachycardia and Bradycardia algorithm and practice, ECG arrhythmia simulator and practice, ACLS guidelines and practice using mannequins.

BASIC AIRWAY MANAGEMENT

Ventilation failure and oxygenation failure, Inserting airway adjunct (OPA – Oropharyngeal airway and NPA - Nasopharyngeal airway), Oxygen therapy, LMA and insertion Technique, AMBUBAG indication and practice.

VENTILATOR FOR LIFE SUPPORT

Basic anatomy of lung and mechanism of breathing, Mechanical ventilator history and classification, Pressure –volume flow diagram, Different modes of ventilator, Ventilator alarm and trouble shooting, Indication and disease specific ventilation, Weaning from ventilator.

ROLE OF ULTRASOUND IN LIFE SUPPORT

Basic principle of ultrasound and different modes of display, Different transducers used in ultrasound, Ultrasound doppler blood flow meter, Ultrasonography in emergency cardiovascular care, Lung ultrasound, Fast scan.

TEXT BOOKS:

- 1. Arthur C. Guyton, John Edward Hall, "Textbook of Medical Physiology", 13th Edition Elsevier Inc 2016.
- 2. John M. Field, Peter J. Kudenchuk, Robert O'Connor, Terry Vanden Hoek, "The Textbook of Emergency Cardiovascular Care and CPR", lippinocot William and wilkins, 1st Edition, 2009.
- 3. James G. Adams, "Emergency Medicine: Clinical Essentials", Saunders an imprint of Elsevier Inc, 2nd Edition, 2013.
- 4. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata Mc Graw Hill, 2nd Edition, 2003.

REFERENCES:

- 1. Peter Papadakos, Burkhard Lachmann, "Mechanical Ventilation: Clinical Applications and Pathophysiology", sunders an imprint of Elsevier, 1st Edition 2008.
- 2. Ashfaq Hasan ,"Understanding Mechanical Ventilation: A Practical Handbook", Springer verlag London limited, 2nd Edition 2010.
- 3. Matthias Hofer, "Ultrasound Teaching Manual: The Basics of Performing and Interpreting", thieme newyork Stuttgart, 3rd Edition, 2013.

COUR				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Ms.S.Mythrehi	Assistant Professor (G-I)	BME	mythrehi@avit.ac.in

17RN	17BMSE07 MEDICAL RADIATION SAFETY ENGINEERING Category L T P Credit											Credit			
1701	ISEU7	IVII	DICA	L KAI	JIAIN	UN SH	TLII	LING			PS-SE	3	0	0	3
PREA To imp	PREAMBLE To impart sufficient information on the various precautionary and safety measures for radiation protection in medicine.														
PREREQUISITE – NIL															
COUR	SE OB	JECTI	VES												
1	To pro	ovide ai	n insigh	t to the	basics	of radia	tion ph	ysics.							
2	To ena	able the	em unde	erstand	the guid	lelines	of radia	tion pro	otection a	and radi	ation dete	ectors.			
3	To pro	ovide in	formati	ion on s	afety n	neasure	s related	d to UV	, laser ar	nd nucle	ar medici	ine.			
COUR	SE OU	тсом	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	e able t	0						
CO1.]	Explain	the Ra	dio freq	uency a	and Mic	crowave	e radiati	ions.					Und	erstand	
CO2. 1	Examin	e the La	aser and	l UV ra	diation	control	measu	re.					App	ly	
CO3. (Outline	the pro	tective	measur	es and 1	adiatio	n hazar	ds in nu	iclear me	edicine a	and radio	therapy.	Ana	lyze	
CO4. 4	Assess t	he vari	ous mo	nitoring	g metho	ods & I	Hazard	in radia	tion prot	tection			Eva	luate	
CO5. 1	Designi	ng to re	duce th	e radiat	tion haz	ards.							Crea	ate	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAMM	IE SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М					L		L				М	М	М	М
CO2	S	М	М			М	М	М	L			М	М	М	М
CO3	S	S	М	М		М	S	М	М			М	М	М	М
CO4	S	S	S	S		S	S	S	S		М	S	М	S	S
CO5	S	S	S	S	М	S	S	S	S		S	S	S	S	S

CO1	М					L		L		 	М	М	М	М
CO2	S	М	М			М	М	М	L	 	М	М	М	М
CO3	S	S	М	М		М	S	М	М	 	М	М	М	М
CO4	S	S	S	S		S	S	S	S	 М	S	М	S	S
CO5	S	S	S	S	М	S	S	S	S	 S	S	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO RF AND MICROWAVE RADIATION

Sources of radio frequency radiation - Effects of radio frequency radiation - Development of standards for human safety - Calculation of RF field quantities - RF radiation measuring instruments and methods.

RADIATION DETECTION AND MEASUREMENT

Fundamentals of radiation detection - Conducting radiation measurements and surveys - Gas detectors - Designing to reduce radiation hazards - Radio frequency radiation safety management and training - Scintillation detectors - Statistics of Counting – minimum detectable activity – Quality assurance of radiation counters.

RADIATION SAFETY IN NUCLEAR MEDICINE AND RADIOTHERAPY

Design and description of NM department – Radiation protection in nuclear industry – Guidelines for radiation protection- Molecular medicine and radiation safety program procedures for safe operation of radiation equipment – Radiation protection in external beam radiotherapy – Radiation protection in brachytherapy – Radioactive wastes.

LASER AND ULTRAVIOLET RADIATION SAFETY

Classification of UV radiation – Sources of UV – Biological effects of UV – Hazards associated with UV radiation – UV control measures – Safety management of UV Classifications of LASER and its radiation hazards – control measures – Emergencies and incident procedures.

MONITORING AND INTERNAL DOSIMETRY

Monitoring methods – personal radiation monitoring – Records of personal dosimetry – ICRP method – MIRD method – Internal doses from radiopharmaceuticals – Bioassay of radioactivity –Hazard and risk in radiation protection – radiological incidents and emergencies – Regulation to radiation protection.

TEXT BOOKS:

- 1. Jamie V Trapp, Thomas Kron, "An introduction to radiation protection in medicine", CRC press Taylor & Francis group, 2008
- 2. Alan Martin, Samuel Harbison, Karen Beach, Peter Cole, Hodder Arnold, "An introduction to radiation protection", 6th Edition 2012.

REFERENCES:

- 1. Max Hlombardi, **"Radiation safety in nuclear medicine"**, CRC Press Taylor & Francis group, 2nd Edition, 2007.
- 2. Aruna Kaushik, Anupam mondal, B.S. Dwarakanath, R.P.Tripathi, "Radiation protection manual", INMAS, DRDO, 2010.
- 3. Ronald kitchen, "**RF and microwave radiation safety**", Newness publishers, 2nd Edition, 2001.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Ms.S.Mythrehi	Assistant Professor (Gr-I)	BME	mythrehi@avit.ac.in
3	Mr. R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

COMPUTER SIMULATION OF IC ENGINE PROCESSES

Category	L	Т	Р	С
EC(PS)	3	0	0	3

Μ

М

Μ

Preamble

This course includes the study of adiabatic flame temperature, analysis of actual and ideal cycles and simulation of S.I, and C.I engine performance

Prerequisite

Nil

Course	Objec	tives													
1	To des	scribe t	he me	thods o	f meas	suremen	nt of H	IRR an	d calc	ulation	of adi	abatic f	lame ten	nperatur	e of IC
1	engine	s.													
2	То ехр	lain the	e metho	ods of si	mulation	on of IC	C Engir	nes.							
3	To lear	n the si	imulati	on of IC	C engin	es with	gas ex	change	proces	ses and	l engine	e perforr	nance si	mulation	l
4	To kno	w the S	Simulat	ion of S	S.I engi	ne with	1 intake	e and ex	haust c	harging	g				
5 To study the simulation of C.I engine performance															
Course	Outco	mes:													
After Su	After Successful completion of this course, the students will be able to:														
CO1.	CO1. Summarize the measurement of HRR and calculation of Adiabatic flame temperature Understand														
CO2.	App	ly the	I.C eng	ine sim	ulation	with A	diabati	ic comb	oustion					Ap	ply
CO3.	App simu	ly the s ilation	imulati	on of I	C engin	nes with	n gas ex	change	e proces	sses and	d engin	e perfori	mance	Ap	ply
CO4.	Exai	nine Si	mulati	on of S.	I engin	e with	intake a	and exh	aust ch	narging				Ana	lyze
CO5.	Ana	lyze Sir	mulatic	on of C.	I engin	e perfo	rmance	•						Ana	lyze
		Μ	lapping	g with]	Progra	mme ()utcon	ies and	Progr	amme	Specifi	ic Outco	mes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	Μ				Μ				М	М	L	
CO2	S	Μ	М	М			Μ	М	М			М	М		
CO3	S	S	S	Μ			М	М	М			М	М	L	М
CO4	S	S	S	М			М	М	М			М	М		

Μ

Μ

Μ

S- Strong; M-Medium; L-Low

S

S

М

--

S

CO5

Syllabus

INTRODUCTION

Introduction – Heat of reaction – Measurement of URP – Measurement of HRR – Adiabatic flame temperature: Complete combustion in C/H/O/N Systems, Constant volume adiabatic combustion, constant pressure adiabatic combustion. Calculation of adiabatic flame temperature – Isentropic changes

ENGINE SIMULATION WITH AIR AS WORKING MEDIUM

Deviation between actual and ideal cycle – problems, SI engine simulation with adiabatic combustion, temperature drop due to fuel vaporization, full throttle operation – efficiency calculation, part – throttle operation, super charged operation.

PROGRESSIVE COMBUSTION

SI Engines simulation with progressive combustion with gas exchange process, Heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram and other engine performance.

SIMULATION OF SI ENGINE

Intake – Exhaust - Charging and Combustion Simulation for two stroke and four stroke spark ignition Engine

DIESEL ENGINE SIMULATION

Zero, one and multi zone model for combustion, different heat release and heat transfer models, equilibrium calculations, simulation of engine performance.

TEXT BOOK:

- 1. Ganesan. V "InternalCombustion Engines" Tata McGraw-Hill, 2013.
- 2. Ganesan.V. Computer Simulation of compression ignition engines Orcent

REFERENCES:

- 1. Ramoss A.L. Modeling of Internal Combustion Engines process, McGraw Hill Publishing Co., 1992
- 2. Ashley Cambel, Thermodynamics analysis of combustion engines, John Wiley & Son, New York, 1986.
- 3. Benson, R.S., Whitehouse, N.D., Internal Combustion Engines, Pergamon Press, Oxford, 1979.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

1747501	COMPUTER CONTROLLED VEHICLE Category L T											Р	С	
I/AIECI	4			SYS	STEMS	5			EC(P	S)	3	0	0	3
										•		•		
Preamble														
This course in	roduce	s the ro	le of se	nsors a	nd actu	ators fo	or contro	olling	the eng	ine, dri	ve line.	It also pr	ovide	
knowledge abo	out the t	ranspo	rtation	and saf	ety dev	vices co	ntrolled	by co	mputer					
Prerequisite	Nil													
Nil Course Objectives														
Course Objectives														
1 To explain the concepts of speed control, suspension for autonomous vehicles .														
2 To detail on the advanced methods of control of management systems towards adaptive cruise control														
autom	² automotive vehicles.													
3 To describe about intelligent transportation system.														
4 To det	ail on tl	ne smar	t safety	device	es for a	utomoti	ive vehi	cles.						
Course Outco	mes:													
After Successf	ul com	pletion	of this	course,	the stu	idents v	vill be al	ble to:						
CO1. App	ly the c	oncept	s of cor	ntrol sy	stems o	of vehic	eles towa	ards au	itonom	ous driv	ving.		Ap	oply
CO2. App	ly the c	lifferen	t comp	onents	for dev	eloping	g an adaj	ptive c	ruise co	ontrol.			Aţ	oply
CO3. App	raise or	n the in	telligen	t trans	oortatic	on syste	m.						Ap	oply
CO4. Rec	ommen	d smar	t safety	device	s for au	itomoti	ve vehic	eles					Ana	alyze
• •	Μ	lapping	g with	Progra	mme (Dutcom	nes and	Progr	amme	Specifi	ic Outco	mes		2
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	М	М				-	-			-	S		
CO2 S	М	М	М	М		-	_	-			-	S	М	
CO3 S	S	S	М	М		-	-	-			-	S		L
CO4 S	S	S	М	М		-	-	-			-	S	М	
S- Strong; M-N	Medium	; L-Lo	W	1	1	1	1 1		1		1	1 1		

Syllabus

INTRODUCTION

Understanding autonomy – Review of the role of control in autonomy (speed control, suspension control & integrated vehicle dynamics) - Role of sensors and actuators. Examples of autonomy cruise control

ENGINE CONTROL SYSTEM

Fuel control-Ignition control in SI engines- Lambda control- idle speed control- Knock control- cylinder balancing **DRIVE LINE CONTROL SYSTEM**

Speed control – gear shifting control – traction /braking- steering- suspension – vehicle handling and ride characteristics of road vehicles- adaptive cruise control

INTELLIGENT TRANSPORTATION SYSTEM

Overview – control architecture – collision avoidance, pitch, yaw, bounce control – traffic routing system- automated high way systems- lane warning system- driver information system- data

SAFETY IMPACTING DEVICES

Vision enhancement- driver conditioning warming- anti-lock braking systems – route guidance and navigation systems – in-vehicle computing – commercial vehicle diagnostic/ prognostics – hybrid/ electric and future cars- case study.

TEXT BOOK:

1. Automotive control systems, U.Kienckeand L. Nielson, SAE and springer-Verlag, 2000

REFERENCES:

- 1. Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, New Delhi.
- 2. Artamonov, M.D., Harionov, V.A. & Morin, M.M. Motor Vehicle, Mir Publishers, Moscow 1978.,
- 3. Heitner, J., Automotive Mechanics, CBS Publishers, New Delhi 1987.
- 4. Stockel Martin W and Stocker Martin T., Auto Mechanics Fundamentals, Goodheart Wilcox,

Cours	seDesigners:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17	AESE1	8	МЕТА	L FO	RMIN	NG AN	D	Cat	egory	L	1	Т	Р	Cr	edit
1/1		0	JOI	NING	PRO	CESS		(CC	3		0	0		3
Prea T exten analy weld	This course aims to provide the basic knowledge on plasticity taught in mechanical metallurgy is extended to theory and applications of metal forming. Various metal forming processes and their analysis are studied in detail and also the students can understand the process used and the allied welding metallurgy in order to make a successful weld. Prerequisite														
Prer NIL	equisite	9													
Cour	rse Obj	ective													
1	To Acc	quire b	asic kn	owledg	ge on	fundam	nenta	als of	metal	formi	ng				
2	To Un	derstan	d the v	arious	formi	ng proc	cesse	es and	its ap	plicati	on				
3	To Acc	quire b	asic kn	owledg	ge on	metal jo	oinir	ng pro	cesses	5					
4	To Un	derstan	d the v	arious	metal	joining	g pro	ocesse	s and	its app	plicatio	on			
5	To Un	derstan	d the w	velding	g of al	loy stee	els ai	nd no	n-ferro	ous me	tals				
Course Outcomes: On the successful completion of the course, students will be able to															
CO1	Expl	ain ba	sic kno	wledge	e on fi	undame	ental	s of r	netal f	ormin	g		τ	Jndersta	and
CO2	Expl	ain the	variou	s form	ing pr	ocesses	s and	l its aj	pplicat	tion			τ	Jndersta	and
CO3	Appl	y basi	c know	ledge	on me	etal join	ning	proce	sses					Apply	7
CO4	Expe	riment	with y	various	meta	l joinin	ng pr	ocess	es and	its app	plication	on		Apply	7
CO5	Expe	riment	with	the we	lding	of allo	y ste	els an	d non	-ferrou	is meta	ıls		Apply	7
Мар	ping wi	ith Pro	gramr	ne Ou	tcome	es and l	Prog	gramı	ne Sp	ecific	Outco	mes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO1	S	L	М	S									L		
CO2	S		М										L		
CO3	S	L	L	L									L		
CO4	S		М	М									L		
CO5	S	L	L	М						_			L		
S- Str	ong; M-	Medium	ı; L-Lov	W		•									

FUNDAMENTALS OF METAL FORMING

Fundamentals of metal forming- Effect of temperatures, speed and metallurgical microstructure on forming processes - Mechanics of Metal Forming.

Yield criteria for ductile metals - Flow theories - strain hardening - recrystallization.

METAL FORMING PROCESSES

Forging Processes Forging Equipment, Forging defects - Types of Rolling mill – process variables – defects.

Types of extrusion - Process variables - Wire drawing - Drawing and Deep drawing – Sheet metal working . High energy rate forming processes.

FUNDAMENTALS OF METAL JOINING

Classification of welding processes: Arc welding power sources, power source characteristic curves, flux covering, different types of electrodes and their applications, gas welding and cutting, flame characteristics

METAL JOINING PROCESSES

Gas tungsten arc welding process, electrode polarity, shielding gas, use of pulsed arc welding process; gas metal arc welding, mode of metal transfers, pulsed MIG welding process.

Submerged arc welding, advantages and limitations.

Orbital welding of tubes / pipes; Plasma-arc welding process, transferred and non- transferred arc welding and their applications, plasma cutting, surfacing and applications

Working Principle of resistance welding process-spot, seam, projection, upset and flash butt Welding, electro slag and electro gas welding.

Radiant energy welding processes - equipment -electron beam welding (EBW) - laser beam Welding (LBW) - applications of EBW and LBW- Friction Steel Welding.

WELDING OF ALLOY STEELS AND NON-FERROUS METALS

Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, Sensitisation, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron. Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions. Defects in welding. Introduction to International Standards and Codes

Text Books

- 1. Narayanasamy, R., "Metal forming technology"2nd Edition, Ahuja Pub.
- 2. R. S.Parmar, "Welding Engineering and Technology" 2nd edition M/s. Khanna Publishers.

Reference Books

- 1. George E.Dieter, "Mechanical Metallurgy",1 edition McGraw Hill book Co.- Koga,.
- 2. William F Hosford and Robert M Caddell "Metal Forming Mechanics and Metallurgy" Third Edition, Cambridge University Press.
- 3. ASM Handbook on Forming and Forging, Vol.14, 9th Edition ,ASM International
- 4. Baldev Raj, Shankar V, Bhaduri A K". Welding Technology for Engineers" Narosa Publications.

5. "AWS Welding Hand book", 9th edition, Vol-1,"Welding Science and Technology".

6. Nadkarni S.V., "Modern Arc Welding Technology", 1 st Edition, IBH Publishing.	
7. Kearns W. H, "Welding Hand Book (Welding Processes)", Volume II and III, 7 th	
Edition,AWS.	

Course Designers

Cours													
S.No	Faculty Name	Designation	Department/ Name of the College	Email id									
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	ashokkumar@avit.ac.in									

17MESE19 PROCESS PLANNING AND COST ESTI								ГI	Categ	ory	L	Т	Р	Credit	
17101					MA	ATION				EC(S	E)	3	0	0	3
PREA This c produc	MBL course cts afte	E revi er pro	ews the	e vario anning.	us stej	os invo	lved i	n proces	s plar	nning c	oncepts	and co	ost estim	nation for	various
PRER	EQU	ISIT	E - NIL	_											
COU	OURSE OBJECTIVES														
1	To know about Work study, Ergonomics														
2	To demonstrate about process planning and its approaches.														
3	To il	lustra	ate abou	ıt eleme	ents of	cost est	imatic	on.							
4	To ca	alcula	ate the v	various	Cost E	stimati	on met	thods.							
5	To a	nalyz	e the to	tal proc	luction	cost es	timati	on.							
COU	COURSE OUTCOMES														
On the	succe	essful	compl	etion of	the co	ourse, st	udents	will be a	ble to						
CO1	Unde	erstan	d the w	ork stu	dy and	ergono	mics.						Und	lerstand	
CO2	Dem	onstr	ate the	various	steps i	nvolve	l in pr	ocess pla	nning				App	oly	
CO3	Illust	rate t	he vari	ous elei	nents o	of cost e	estimat	tion.					App	oly	
CO4	Appl	y the	various	s cost e	stimati	on meth	nods in	n producti	on.				App	oly	
CO5	Anal	yze tl	he cost	estimat	ion of	various	jobs ii	nvolved i	n proc	luction			Ana	lyze	
MAPI	PING	WIT	'H PRC	OGRAN	MME (OUTCO	OMES	S AND PI	ROGI	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	L	-	М	-	-
CO2	S	Μ	М	М	-	-	-	-	-	-	М	-	М	-	-
CO3	S	Μ	М	М	-	-	-	-	-	-	М	-	М	-	
CO4	S	Μ	М	М	-	-	-	-	-	-	S	-	Μ	-	-
CO5	S	Μ	М	М	-	-	-	-	-	-	S	-	М	-	-
S- Str	S- Strong; M-Medium; L-Low														

WORK STUDY AND ERGONOMICS:

Method study – Definition – Objectives-Motion economy- Principles – Tools and Techniques-Applications – Work measurements- purpose – use – procedure – tools and techniques- Standard time –Ergonomics – principles – applications.

PROCESS PLANNING :

Definition – Objective – Scope – approaches to process planning- Process planning activities – Finished part requirements operating sequencesmachine selection material selection parameters- Set of documents for process planning Developing manufacturing logic and knowledge production time calculation – selection of cost optimal processes.

INTRODUCTION TO COST ESTIMATION:

Objective of cost estimation- costing - cost accounting- classification of cost-Elements of cost.

COST ESTIMATION:

Types of estimates – methods of estimates – data requirements and sources- collection of cost- allowances in estimation.

PRODUCTION COST ESTIMATION

Estimation of material cost, labour cost and over heads, allocation of overheads – Estimation for different types of jobs

TEXT BOOKS:

1. Sinha.B.P., "Mechanical Estimating and Costing", Tata McGraw-Hill, Publishing Co.2002

REFERENCES:

- 2. Russell.R.S and Tailor, B.W, "Operations Management", PHI, 4th Edition.
- 3. Chitale.A.V. and Gupta.R.C., "Product Design and Manufacturing", PHI, 2nd Edition.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mech/AVIT	antonycasmir@avit.ac.in
2	C THANGAVEL	Asst Prof	Mech/VMKVEC	thangavel@vmkvec.edu.in

17CV	VEC07 DISASTER MITIGATION AND MANAGEME								MENT	Categ	gory	L	Т	Р	Credit
										EC (DE)	3	0	0	3
PREA: structur such th	PREAMBLE This course deals with the various disasters and to expose the students about the measures, its effect against built structures, and Hazard Assessment procedure in India. This course also deals with the methods of mitigating various hazards such that their impact on communities is reduced.														
PRER NIL	PREREQUISITE NIL														
COURSE OBJECTIVES															
1	1 To Understand basic concepts in Disaster Management														
2	To Un	derstar	nd Defii	nitions	and Ter	minolo	gies use	ed in Di	saster N	lanagem	lent				
3	To Un	derstar	nd the C	Challeng	ges pose	ed by D	isasters								
4	To unc	lerstan	d Impa	cts of D	isasters	5									
COUR	SE OU	ГСОМ	IES												
On the	On the successful completion of the course, students will be able to														
CO1. U Atmosj Driven	CO1. Understand the various types of disaster viz Hydrological, Coastal and Marine Disasters, Atmospheric Disasters, Geological, Mass Movement and Land Disasters, Wind and Water Understand Driven Disasters.														
CO2. Io sugges	dentify t t suitable	he pote e reme	ential de dial me	eficienc asures.	ties of e	xisting	buildin	gs for E	Earthqua	ıke disas	ter and		Ŭ	Inderstand	1
CO3.D Earthqu	erive the uake disa	e guide aster.	e lines fo	or the p	recautio	onary m	leasures	s and re	habilitat	tion mea	sures for	ſ		Apply	
CO4. I	Derive th	e prote	ection n	neasure	s agains	st floods	s, cyclo	ne, land	l slides					Apply	
CO5. U	Jndersta	nd the	effects	of disas	sters on	built st	ructures	s in Ind	ia				U	Inderstand	1
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAMN	AE SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	-	-	L	-	М
CO2	М	М	L	L	-	М	-	-	-	-	-	-	L	-	М
CO3	S	М	S	М	-	L	-	М	-	-	-	-	М	L	М
CO4	S	М	S	-	L	-	-	-	-	-	-	-	М	L	М
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	L
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

TEXT BOOKS:

Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.

Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.

Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

REFERENCES:

Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.

Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.

Goswami, S. C. Remote Sensing Application in North East India, PurbanchalPrakesh, Guwahati, 1997.

Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.

Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.

National Policy on Disaster Management, NDMA, New Delhi, 2009.

Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com								
2	J.KarthickRajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com								

												Categor	у	L	Т	Р	С
17840	C10		ENEF	RGY C	ONSE	RVAT	TON A	AND M	IANAG	EMEN		CC		3	0	0	3
IIBAC		PRE	REQU	UISIT	$\mathbf{E} - \mathbf{N}$	IL					L. L.						
Preamble	•																
To enable	the stu	idents	to acqu	uire the	e know	vledge	of ene	ergy co	nserva	tion me	easure	s in thern	nal an	d el	ectric	al en	ergy
COURSE	C OBJI	ECTIV	VES														
1	1 To impart knowledge on energy management and facilitate application of energy conservation techniques in process industries.																
2		To in	To impart knowledge on thermal and electrical utilities for evaluating energy saving potential.														
3		To le mod	To learn the positions of energy management in energy intensive industries using various model and chart.														
4		To in estab	Γο inculcate knowledge and skills about assessing the energy efficiency of an entity/ establishment.														
5		To bring out Energy Conservation Potential and Business opportunities across different user segments under innovative.															
COURSE OUTCOMES																	
On succe	On successful completion of the course, the students will be able to																
CO	1	Acque	uaintar ning, a	nce wi nd ene	th concergy ec	nserva conom	tion c ics.	of ener	gy an	d its r	nanage	ement, e	nergy	Ar	nalyze	e	
CO	2	Reco their	ognize manag	- How gemen	v of en t	ergy e	efficie	nt mac	hinery	system	is, ene	rgy losse	es and	Ev	aluate	¢	
CO	3	Abil plan	ity in 1 ning ar	Energy nd prac	analy analy	ysis teo	chniqu	ies and	l metho	ods &	Energ	y conserv	vation	Un	dersta	and	
CO	1	Estir tech	nate t nique a	he teo idopteo	chno d.	econoi	nic f	easibili	ty of	the e	nergy	conserv	ation	Ap	oply		
C0 5	5	Eval stear	uate tl n distr	he per ibutior	forma 1 syste	nce of ms to	f ther impro	mal ut ve effi	ilities ciency	like f	urnace	, boilers	and	Cro	eating	,	
COe	CO6 Takeout performance assessment and suggest methods to improve the overall efficiency for different energy intensive industries Analyze																
Mapping	with Pı	rogram	nme ou	tcome	s and I	Progra	mme S	Specifi	c Outc	omes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	1	PSO2	PS	03
CO1	-	L	Μ	S	-	-	-	-	L	-	-	L	L		-		-
CO2	L	-	M	L	-	L	-	L	-	-	-	-	L		-		-
CO3	L	-	L	-	-	-	-	-	-	-	-	-	-		M		-

CO6 S- Strong; M-Medium; L-Low

L

S

L

-

Μ

-

-

-

-

Μ

-

S

L

Μ

CO3

CO4

CO5

-

-

-

L

-

-

-

-

-

-

-

-

-

-

L

-

-

-

-

L

-

L

-

Μ

Μ

-

Μ

-

-

-

ENERGY CONSERVATION PRINCIPLES

Energy scenario, principles of energy conservation, resource availability, energy savings, current energy consumption in India, roles and responsibilities of energy managers in industries.

ELECTRICAL SYSTEMS

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors – Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

ENERGY CONSERVATION IN THERMAL SYSTEMS

Energy conservation in thermal utilities like boilers, furnaces, pumps and fans, compressors, cogeneration - steam and gas turbines. Heat exchangers, lighting system, motors, belts and drives, refrigeration system.

ENERGY CONSERVATION IN ELECTRICAL SYSTEMS

Potential areas for electrical energy conservation in various industries, conservation methods, energy management opportunities in electrical heating, lighting system, cable selection, energy efficient motors, factors involved in determination of motor efficiency, adjustable AC drives, variable speed drives, energy efficiency in electrical system

ENERGY MANAGEMENT

Organizational background desired for energy management persuasion, motivation, publicity role, tariff analysis, industrial energy management systems, energy monitoring, auditing and targeting, economics of various energy conservation schemes – energy policy and energy labeling.

TEXTBOOK

- 1. Reay .D.A, "Industrial Energy Conservation", Pergamon Press, 1st edition, 2003.
- 2. White .L. C, "Industrial Energy Management and Utilization", Hemisphere Publishers, 2002.

REFERENCES

- 1. Beggs, Clive, "Energy Management, Supply and Conservation", Taylor and Francis, 2nd edition, 2009.
- 2. Smith .C.B, "Energy "Management Principles", Pergamon Press, 2006.
- 3. Hamies, "Energy Auditing and Conservation; Methods, Measurements, Management and Case study", Hemisphere, 2003.
- 4. Trivedi .P.R and Jolka .K.R, "Energy Management", Common Wealth Publication, 2002..

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K.Boopathy	Professor	EEE/AVIT	boopathyk@avit.ac.in
2	Mrs. V.Manjula	AP	EEE/VMKVEC	manjula@vmkvec.edu.in

17M	17MTPI01 PROJECT WORK AND VIVA VOCE								0	Category	L	Т	P C	redit	
											PI	0	0	18	9
PREA	AMBLE	4													
This c	course in	troduc	es the f	ùndam	ental c	concept	ts, prin	ciples, a	nalysis a	and des	ign of h	ybrid,	electric	vehicles	
PREI	REQUIS	SITE:													
COU	COURSE OBJECTIVES														
1	1 To create the model based on innovative Concepts														
2	2 To design and develop advanced electrical circuits.														
3	To analyze the working of created systems.														
4	To. Inve	stigate	the mo	odel wh	nich is	develo	ped wi	ith Innov	vative Co	oncept.					
5	To. Con	npare t	he Exis	ting sy	stem v	with ne	wly de	veloped	System.						
COU	RSE OU	U TCO	MES												
On the successful completion of the course, students will be able to															
CO1:	CO1: Create the innovative concepts of electro mechanical systems. Create														
CO2:	Design	the aut	omated	l syster	n for I	ndustri	al App	lications	5.					Desigr	L
CO3:	Constru	ct the	designe	d circu	it as a	n Innov	vative	model						Create	
CO4:	Analyse	the pa	aramete	ers of ne	ewly d	evelop	ed Mo	del						Analyz	a)
CO5:	Compar	e the c	operatio	ns of D	Develo	ped Sy	stem w	ith Exis	ting Sys	tem				Evaluat	e
MAP	PING V	VITH	PROG	RAMN	AE O	UTCO	MES A	AND PF	ROGRA	MME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1	S	-	-	-	М	-	М	L	S	L	М	Μ	Μ	S	М
CO2	S	М	S	-	S	-	-	М	S	L	М	-	Μ	М	М
CO3	S	S	М	М	S	-	L	-	М	L	М	S	Μ	S	М
CO4	S	S M M - L - - M L M - M S M													
CO5	05 S M - L S L M - S M M														
S- Str	ong; M-	Mediu	m; L-L	ow		1		I.	<u>ı </u>		ı I		1		
SYLI	ABUS														

- The objective of the project work is to enable the students to form the groups of not more than 3 members on a project involving theoretical and experimental studies related to the branch of study.
- Formation of Group as follows

- Group A : 8.5CGPA and above
- $\circ \quad \text{Group B} : 7 \text{ to } 8.49 \text{ CGPA}$
- Group C : 5 to 6.9 CGPA
- Group A Student will have a choice to take 2 students from Group B&C
- Every project work shall have a guide who is the member of the faculty of the institution. Six periods per week shall be allotted in the time table and this time shall be utilized by the students to receive the directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars on the progress made in the project.
- The aim of the project work is to deepen comprehension of principles by applying them to a new problem which may be the design and manufacture of a device, a research investigation, a computer or management project or a design problem.
- The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department.
- Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusion.
- This final report shall be typewritten form as specified in the guidelines.
- The continuous assessment shall be made as prescribed in the regulations.

COU	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
•													
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.ac.in									
2													

17M	17MTPI02 MINI PROJECT								C	Category	L	Т	P (Credit	
	-										PI	0	0	6	3
PRE. This	AMBLE course in	troduc	es the f	undam	ental c	oncept	ts, prin	ciples, a	nalysis	and des	ign of h	ybrid,	electric	vehicles	
PRE	REQUIS	SITE:													
COURSE OBJECTIVES															
1	1 To create the model based on innovative Concepts														
2	To desig	gn and	develop	o advar	nced el	ectrica	l circu	its.							
3	To analy	ze the	workin	g of cr	reated	system	s.								
4	To. Inve	stigate	the mo	del wh	nich is	develo	ped wi	ith Innoa	tive Co	ncept.					
5	To. Con	npare t	he Exist	ting sy	stem w	vith ne	wly de	veloped	System.						
COU	RSE OU	JTCO	MES												
On the successful completion of the course, students will be able to															
CO1:	CO1: Create the innovative concepts of robotic systems. Create											e			
CO2:	Design	the Sm	all auto	mated	system	n for Iı	ndustri	al Applio	cations.					Desig	1
CO3:	Constru	ct the	designe	d circu	it as a	Miniat	ture In	novative	model					Create	;
CO4:	Analyse	e the pa	aramete	rs of ne	ewly d	evelop	ed Mi	niature I	Model					Analyz	e
CO5:	Compar	e the c	peratio	ns of E	Develop	ped Sy	stem w	vith Exis	ting Sys	stem				Evalua	te
MAF	PING V	VITH	PROG	RAMN	AE OU	JTCO	MES A	AND PR	OGRA	MME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	Μ	L	S	L	М	Μ	Μ	S	М
CO2	S	М	S	-	S	-	-	М	S	L	М	-	М	М	М
CO3	O3 S S M M S - L - M L M S M S M														
CO4	S	М	М	-	L	-	-	-	М	L	М	-	М	S	М
CO5	S	-	-	М	-	L	-	-	S	L	М	-	S	M	М
S- St	S- Strong; M-Medium; L-Low												·	I	

. The students in batches (not exceeding three in a batch) have to take up a project in the area of their own interest related to their specialization.

2. Each batch is guided by a faculty member. The students have to select a suitable problems, design, prepare the drawings, produce the components, assemble and commission the project.

3. The students have to prepare and present a detailed project report at the end of the VI semester.

4. The evaluation will be made for the continuous internal assessment for the Project by a committee nominated by the Head of the Department.

COUH	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
•												
1	Mr.G.Murali	Assistant Professor	ECE	muarlig@vmkvec.ac.in								
2												

17CSPI04			BUSINESS INTELLIGENCE AND ITS								Category	y L	Т	Р	Credit
			APPLICATIONS							PI	3	0	0	3	
PREAMBLE Business Intelligence (BI) refers to the tools, technologies, applications and practices used to collect, integrate, analyze, and present an organization's raw data in order to create insightful and actionable business information in Data mining.															
PREREQUISITE – NIL															
COURSE OBJECTIVES															
1	To Introduce students to various business intelligence concepts														
2	To learn the concepts of data integration used to develop intelligent systems for decision support														
3	To introduce visualization tool for prepare the enterprise reporting														
4	To learn analytical components and technologies used to create dashboards and scorecards, data/text/Web mining methods														
4	4 To gain new insights into organizational operations in implementation of systems for Business Intelligence (BI)														
COURSE OUTCOMES															
On th	On the successful completion of the course, students will be able to														
CO1. L	CO1. Learn about the concepts of OLTP and OLAP for BI infrastructure development														
CO2. Gained an understanding of how business professionals can use analytics techniques to formulate and solve relevant problems and how they use analytics to support decision making Analyze															
CO3. Apply Clustering, Association and Classification techniques for Data Integration Apply															
CO4. /	CO4. Assess BI tools to solve problems, issues, and trends using predictive analysis Apply														
CO5. Develop systems to measure, monitor and predict the enterprise variables and performance Apply indicators for business decision-making process															
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	Μ	-	-	-	-	-	-	М	М	М	М
CO2	S	Μ	L	-	М	-	-	-	-	-	-	М	М	М	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	М	М	М
CO4	S	М	L	-	М	-	-	-	-	-	-	М	М	М	М
CO5	S	М	L	-	М	-	-	-	-	-	-	М	М	М	М
S- Strong; M-Medium; L-Low															

SYLLABUS INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1.Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

S.No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in							
2.	Mrs. S. Leelavathy	Assistant Professor(G-II)	CSE	leelavathy@avit.edu.in							

17MEP103		3	NOISE VIBRATION & HARSHNESS							ategory	,	L	Т	Р	Credit
									PI		3	0	0	3	
PREAMBLE This course reviews the fundamental concepts of acoustics, noise propagation and vibrations. Focus is given to the theory and equipments pertaining to the measurement of automotive acoustics, sound quality and vibrations.															
PREREQUISITE NIL															
COURSE OBJECTIVES															
1	1 To introduce source of noise and vibration														
2	To broaden the understanding of sound measurement and human sensitivity														
3	To underline the importance of simulation, anechoic chamber and acoustic holography														
4	To broaden the importance of statistical and frequency analysis														
5	5 To introduce active control techniques														
COU	RSE C	UTC	OMES	5											
On the	succe	essful	comple	etion of	f the co	ourse, st	udents w	vill be a	ble to						
C01.	CO1.Understand the sources of noise and vibration Understand														
CO2.	Illustra	ate sou	und int	ensity	and hu	man sei	nsitivity			A	Apply				
CO3.	Apply	metho	ods to	model	the adv	anced a	acquisitio	on tech	niques	A	Apply				
CO4 .	Demo	nstrate	e activ	e contr	ol tech	niques				A	Apply				
CO5.	Demo	nstrate	e the a	utomoti	ive nois	se sour	ces			A	Apply				
MAP	PING	WITI	H PRO	OGRAN	MME (OUTC	OMES A	AND P	ROGF	RAMM	E SPE	CIFIC	C OUTC	OMES	
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSC 2	$\begin{array}{c c} PSO\\ 3 \end{array}$
CO1	S	М	М	L		L	L						L		
CO2	S	М	М	М	М	L	L						L		
CO3	S	S	S	S	S	М	М						L		
CO4	S	S	S	S	S	М	М						L		
CO5	S	S	S	S	S	S	S						L		
S- Strong; M-Medium; L-Low															
SYLLABUS

BASICS OF VIBRATION ANALYSIS: Basic Concepts, Formulating the Equations of Motion, Free Undamped Vibrations- Free Damped Vibrations - Logarithmic Decrement, Forced Vibrations, Magnification Factor - Torsional System Characteristics, Single Disc And Two Disc- Two Degree of Freedom Systems under Harmonic Force, Modal Analysis- Coordinate Coupling.

NVH IN THE AUTOMOTIVE INDUSTRY: Sources of noise and vibration. Design features. Common problems. Marque values. Noise quality. Pass-by noise requirements. Target vehicles and objective targets. Development stages in a new vehicle programme and the altering role of NVH engineers.

SOUND AND VIBRATION THEORY: Sound measurement. Human sensitivity and weighting factors. Combining sound sources. Acoustical resonances. Properties of acoustic materials. Transient and steady state response of one degree of freedom system applied to vehicle systems. Transmissibility. Modes of vibration.

NVH MEASUREMENTS: Vibration and Noise Standards – Pass/Drive by Noise-Test Site- Meteorological Condition-Constant Speed Test- Wide Open Throttle Test - Interior Noise Test- Standards – Test Track Condition – Vehicle Operating Condition –Steady Speed – Full Throttle Test –Stationery Test- Microphone Positions.- Stationery Vehicle Test- Standards- Test Site- Preparation of The Vehicle-Vehicle Operating Condition.- NVH Measurement Tools And Techniques- Vibration and Noise Measurement Transducers.- Advanced Acquisition Techniques.

AUTOMOTIVE NOISE SOURCES AND CONTROL TECHNIQUES: Methods for Control of Engine Noise-Control Measures- Mufflers, Transmission Noise- Control Methods.- Intake And Exhaust Noise – Attenuation Of Intake and Exhaust Noise- Dissipative Silencers – Reactive Silencers – Resonators - Aerodynamic Noise, Its Sources And Control Methods- Tire Noise And Their Control Methods, Brake Noise.- Noise Control Strategy, Noise Control At Source.- Noise Control Along The Transmission Path- Barriers, Enclosures, Resonators.

TEXT BOOKS:

- 1. Singiresu S. Rao, "Mechanical Vibrations" 5th Edition, Pearson, September, 2010
- 2. Ambekar, A. G., "Mechanical Vibrations and Noise Engineering", Prentice Hall of India, New Delhi, 2006
- 3. Manasi P. Joshi, "Noise & Vibration Measurement Techniquesin Automotive NVH"2012

REFERENCES:

1. Beranek, L. L. and Ver, I, L., "Noise and Vibration Control Engineering –Principles and Application", John Wiley & Sons, Inc, 1992.

2. Malcolm J. Crocker, "Handbook of Noise and Vibration Control" John Wiley & Sons, Inc 2007

COUR	COURSE DESIGNERS											
S. No.	Name of the Faculty	lty Designation Department / College		Mail ID								
1	SHIVAKUMAR N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com								
2	N. Rajan	Assoc. Prof.	Mech/VMKVEC	rajan@vmkvec.edu.in								

17	17MEPI04	L	NON	-DES	FRU	CTIV	Ð	Cat	egory	L	,	Τ	Р		Cre	edit
17.		'		TES	TING	ſ		(CC	3		0	0		3	3
Prea To s their	mble tudy and industria	l unde al app]	erstand lication	the va	rious	Non	Destr	uctive	Eval	uation	and	Testing	g meth	nods	, theor	y and
Prer NIL	equisite															
Cou	rse Obje	ective														
1	To exp	ose to	the con	ncept o	fove	rview	of NI	TC								
2	To fam	iliariz	e with	the app	olicati	ons of	f diffe	rentia	l equa	tions,	surfa	ce ND	E Metl	hods	8	
3	To und	erstan	d the c	oncept	of th	ermog	graph	y and	Eddy	curren	t test	ing				
4	To understand the concept of ultrasonic testing and acoustic emission															
5	To und	erstan	d the c	oncept	of R	adiogı	raphy	(RT)								
Cou	ourse Outcomes: On the successful completion of the course, students will be able to															
CO1	. Expla	Explain the concept of overview of NDT Understand														
CO2	To familiarize with the applications of differential equations, surface NDEUnderstandMethodsUnderstand															
CO3	. Exper	riment	with t	he con	cept o	of the	rmog	raphy	and E	ddy cu	irrent	testing			Арј	oly
CO4	. Expe	riment	t with	the cor	ncept	of ult	rason	ic test	ing aı	nd acou	ustic	emissi	on		Ар	oly
CO5	. Expe	riment	t with	the co	ncept	of Ra	adiogi	raphy	(RT)						Арј	ply
Map	ping wi	th Pro	ogramr	ne Ou	tcome	es and	l Prog	grami	ne Sp	ecific	Outc	omes				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	I POI	12 PS	SO1	PSO2	PSO3
COI	S		L	М										S	L	
CO2	e s	М	М	М	L]	Μ	L	
CO3	S S	S L M M M L L														
CO4	S S M M L															
CO5	CO5 S M L M M L M															
S- Sti	S- Strong; M-Medium; L-Low															
SYL	SYLLABUS															
OVE	ERVIEW	OF	NDT													

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided

SURFACE NDE METHODS

Liquid Penetrant Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

THERMOGRAPHY AND EDDY CURRENT TESTING

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications.Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique –Principle, AE parameters, Applications

RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

Text Books

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House.

2.Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers.

Reference Books

1.ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.

2.Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey

3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	ashokkumar@avit.ac.in

17EEPI04

Category	L	Т	Р	Credit
PI	3	0	0	3

PREAMBLE

This course is designed to cover all aspects of industrial instrumentation, such as sensing a wide range of variables, the transmission and recording of the sensed signal, controllers for signal evaluation, and the control of the manufacturing process for a quality and uniform product. Instrumentation and process control involve a wide range of technologies and sciences, and they are used in an unprecedented number of applications. Examples range from the control of heating, cooling, and hot water systems in homes and offices to chemical and automotive instrumentation and process control. Today's technological evolution has made it possible to measure parameters deemed impossible only a few years ago. Improvements in accuracy, tighter control, and waste reduction have also been achieved

PREREQUISITE

17EECC04 Measurements and Instrumentation

COURS	E OBJ	ECTI	VES												
1	То р	rovide	fundai	nental	backgi	round i	n theor	ry of Ir	ndustria	al Instru	mentat	ion syste	em		
2	To te and	each th vibrati	e knov on mea	vledge asurem	for the ent, ex	e meas aplain c	uremer lifferer	nt of le nt meth	ngth, a nods fo	ingle an r pressu	d area. re and	and fan flow me	niliarize easurem	with ment.	otion
3	To appli instr	give a ication umenta	detail of diff ation a	led kn ferent s nd com	owledg sensors trol sys	ge on 5 / tran stems	transd sducer	ucer c s their	haracte r signa	eristics l condit	and un ioning	ncertaint and fina	ties in l contro	measur ol eleme	ement, nts for
4	To elaborate different types of Level & viscosity measurement														
5	To give an overview of the features associated with temperature measurement and pyrometers														
COURS	E OUI	ГСОМ	ES												
On the su	iccessf	ul com	pletior	n of the	e cours	e, stude	ents wi	ll be al	ole to						
CO1	Expla Meas	ain the sureme	differe nt	ent typ	es of lo	ad cell	and di	ifferent	t types	of torqu	ie	Underst	and		
CO2	Describe the principle, operation and different types of accelerometer Understand														
CO3	Evalı appli	uate the	e meas	ureme	nt of F	low and	d Leve	l for a	respect	ive		Analyze	e		
CO4	Expla meas	ain the uring t	princij echniq	ple and ues	l opera	ting ch	aracter	ristics of	of Visc	osity		Underst	and		
CO5	Appl Press	y suita sure for	ble tec r a requ	hnique	for me	easurer ion	nent of	f high t	empera	ature an	d	Apply			
MAPPIN	IG WI	TH P	ROGR	AMM	E OU	TCOM	IES Al	ND PR	NOGR	AMME	SPEC	IFIC O	UTCON	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L			L	L	М	S	М		L	L	М	S
CO2	М	L		L						L				L	L
CO3	S	S	S			L	М	М	М		S	L	S	S	
CO4	М	М		М		М		L	М	L	М	L	L	S	
CO5	S	S	М	М		S	М	S	S	S	S	M	S	М	М
S- Strong	;; M-M	ledium	; L-Lo	w	1			·		1		<u>ı</u>	1	ı	

SYLLABUS

MEASUREMENT OF FORCE, TORQUE

Different types of load cells - Hydraulic, Pneumatic, strain gauge- Magneto-elastic and Piezoelectric load cells - Different methods of torque measurement: - Strain gauge-Relative angular twist

MEASUREMENT OF ACCELERATION, VIBRATION

Accelerometers LVDT, Piezoelectric, Strain gauge and Variable reluctance type accelerometers - Mechanical type vibration instruments - Seismic instruments as accelerometer - Vibration sensor - Calibration of vibration pickups

FLOW MEASUREMENTS

Orifice plate different types of orifice plates, Difference between area flow and mass flow meters, Venturi tube — Flow nozzle - Principle and construction and details of Electromagnetic flow meter — Ultrasonic flow meters

LEVEL & VISCOSITY MEASUREMENT

Float gauges - Electrical types: Conductivity sensors, Boiler drum level measurement - Differential pressure method. Viscosity — Saybolt viscometer-Rota meter type viscometer

HIGH TEMPERATURE MEASUREMENTS & PRESSURE MEASUREMENT

Special techniques for measuring high temperature using thermocouple –Radiation fundamentals - Radiation methods of temperature measurement - Total radiation pyrometers -Optical pyrometers. Units of pressure - Manometers, different types, Elastic type pressure gauges Capacitive type pressure gauge. Case Study on application of above discussed measurement in Boiler, Furnace process.

TEXT BOOK

 Patranabis, D. Principles of Industrial Instrumentation, 3rd Edition, Tata McGraw Hill, New Delhi, 2010.
Doebelin, E.O. and Manik, D.N., Measurement Systems Application and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.

REFERENCES

1. Liptak, B.C., Instrumentation Engineers Handbook (Measurement), CRC Press, 2005.

2. Singh,S.K., Industrial Instrumentation and Control, 3rd edition, McGrawHill Education., New Delhi, 2015.

3. Jain, R.K., Mechanical and Industrial Measurements, 12th edition, Khanna Publishers, Delhi, 2011.

4. A. K. Sawhney, PuneetSawhney Course in Mechanical Measurements and Instrumentation and Control, Dhanpat Rai & Sons, New Delhi, 1997.

5. Lessons in Industrial Instrumentation 2/3, Volume 2 of Lessons in Industrial Instrumentation Series, Tony R. Kuphaldt, Samurai Media Limited, 2017, ISBN : 9888407090, 9789888407095

COURSE	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-Mail ID										
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in										
2	S. JENSIE ANITA	Assistant Professor	EEE / AVIT	jensiepresely@avit.ac.in										

17CSPI07	LEARNING IT ESSENTIALS BY DOING	Category	L	Т	Р	Credit
		PI	3	0	0	3

PREAMBLE

The proposed elective course exposes the non-CS/IT students to IT Essentials. The core modules of this Elective includes programming, Database and web Technology amongst other related topics. This course refers to the basic tools and technologies for the right type of website development and enable student to create simple web applications

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To learn about the essentials of Information Technology							
2	To get an idea about the scripting languages.							
3	To get an idea about the internet protocols							
COUR	COURSE OUTCOMES							
On the	On the successful completion of the course, students will be able to							
CO1 U	Inderstand the networking concept internet protocols, network routing	Understand						
CO2. U	Inderstand the fundamentals of web applications and its modeling	Understand						
CO3. Understand and learn the scripting languages with design of web applications Understand								
CO4. A	Analyze the process of mobile communication and network technologies	Analyze						
CO5. H applica	Build simple interactive applications, database applications and multimedia tions.	Analyze						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	-	-	-	-	-	-	-	М	М	М	-
CO2	S	М	М	М	-	-	-	-	-	-	-	М	М	М	-
CO3	S	М	М	М	-	-	-	-	-	-	-	М	М	М	-
CO4	М	М	М	М	М	-	-	-	-	-	-	М	М	-	-
CO5	М	М	М	М	S	-	-	-	-	-	-	М	S	М	-
S- Strong; M-Medium; L-Low															

SYLLABUS

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

 $\label{eq:constraint} \begin{array}{l} Data \ processing - the \ database \ technology - data \ models-ER \ modeling \ concept \ -notations \ - \ Extended \ ER \ features \ -Logical \ database \ design \ - \ normalization \ -SQL \ - \ DDL \ statements \ - \ DML \ statements \ - \ DCL \ statements \ - \ statements \ - \ DCL \ statements \ - \ statements \ - \ statements \ statements \ - \ statements \ statements \ - \ statements \$

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in		
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in		

										Categ	ory	L	Т	Р	Credit
17AI	PEE01	I	PERSO	NALIT	'Y SKI	LLS D	EVEL(OPMEN	NT - I	EE	с V Т	2 VEEKS TRAINI NG	0	0	1
PREA	MBLE	C										1			
To enh	ance h	olistic	develo	pment	of stuc	lents ai	nd imp	rove th	eir emp	oloyabili	ty skill	S			
PRER	EQUI	SITE	- Nil												
COUR	RSE OI	BJEC'	FIVES												
1	1 To improve aptitude, problem solving skills and reasoning ability														
2	To collectively solve problems in teams & group														
3	To kr	low the	e conce	pt of Q	uantita	ative a	nalysis	_							
4	To ha	ve a g	ood kn	owledg	e in re	asonin	g								
5	To ide	entify	and sol	ving th	e Mat	hemati	cal Pu	zzles							
COUR	URSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1.	CO1. Identify, formulate and solve aptitude problems Apply														
CO2.	Apply t	he kno	owledge	e of M	athema	tics, S	cience	and En	gineeri	ng in m	athema	tical pro	blems	Apply	
CO3.	Use the	Tech	niques	& skill	s.									Apply	
CO4.	Engage	in Lif	e-Long	g Learn	ing.									Apply	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND F	ROGI	RAMMI	E SPE	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S										S			
CO2	S	S										S			
CO3	S	S										S			
CO4	S	S						-				S			
S- Stro	S- Strong; M-Medium; L-Low														
SYLLABUS															
NUMBEDS I															
	SEKS-	l opertie	e of Ni	umbers	ICM	GCD	Surde	and in	dices						
rypes		sperie	5 UI IN	1110018		, ככם	, Suius		uices						
ARITI	нмет	IC – 1	[
Percen	tages, I	Profit	& Loss	, Area	and vo	lume									

QUANTITATIVE ANALYSIS-I.

Time and works ,Pipes and cistern, Calendar and Clocks

REASONING-I

Mathematical operations, Coding and decoding, Blood relationship

PUZZLES-I

Classification type, Seating arrangements and Comparison types

TEXTBOOKS:

Agarwal.R.S – Quantitative Aptitude for Competitive Examinations, S.Chand Limited 2011

REFERENCES:

- 1. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Tata McGraw Hill, 3rd Edition, 2011
- 2. Edgar Thrope, Test Of Reasoning for Competitive Examinations, Tata McGraw Hill, 4th Edition, 2012

1Dr. M.VijayarakavanAsso.ProfVMKVECvijayarakavan@vmkvec.edu.in2Dr.A.K.ThamizhsudarAsso.Prof. grade IIAVITthamizhsudar@avit.ac.in	S.No	Name of the Faculty	Designation	Name of the college	Mail ID
2Dr.A.K.ThamizhsudarAsso.Prof. grade IIAVITthamizhsudar@avit.ac.in	1	Dr. M.Vijayarakavan	Asso.Prof	VMKVEC	vijayarakavan@vmkvec.edu.in
	2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in

			р	EDGO	ΝΙΑΤΤ	rv sv	тт т	(Catego	ry	L	,	Т	Р	Credit
17A	17APEE02		DEVE	LOPM	I I SK IENT -	ENT - II		HSS		2 WE TRAI	EKS NING	0	0	1	
PREAN	ABLE: S	SM &	S												
Persona	ality Sk	ill D	evelop	ment	provid	les a j	profes	sional	appro	ach an	d make	s the s	tudent	s read	ly for the
industry	y as wel	ll as to	o mak	e them	to und	derstar	nd the	entrep	reneur	ial appr	oach th	rough v	various	actio	ns. It also
breaks	breaks down the barriers between the institute and industry by anticipating the technology update.														
PRERE	PREREQUISITE: Not Required														
COURSE OBJECTIVES:															
	1. To le	arn an	d prac	tice the	Soft sl	cills.									
	2. To as	ssess tl	ne imp	ortance	of soc	ial skil	ls.								
	3. To practice SWOT analysis for individual and group.														
	4. To build and enhance the self confidence														
	5. To apply and observe various personality skills for personality development.														
COURS	SE OUT	COM	ES:												
After su	ccessful	comp	letion	of the c	course,	studen	ts will	be able	to						
	CO1: U	Inders	tand th	e impo	rtance	of Pers	onality	related	d to the	workin	g enviro	nment.	U	nderst	and
	CO2: In	nculca	te relev	vant int	erperso	onal ski	ills for	surviva	al.				А	pply	
	CO3: A	analyse	e vario	us skill	s of SV	VOT a	nalysis						А	nalysi	ng
	CO4: A	pplyi	ng asso	ortment	of soft	skills	for self	assess	ment f	or both o	organisa	tionally	E	valuat	e
	ar	nd soci	ially.												
	CO5: Bi	uild se	lf este	em and	releva	nt pers	onality	skills a	accordi	ng to go	oal.		E	valuat	e
MAI	PPING	WIT	H PR	OGRA	MMH	E OUI	COM	ES A	ND PH	ROGRA	AMME	SPEC	IFIC C	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1				L		L			L	М	L	L			М
CO2		М	М	L			L	Μ	М			L			
CO3						М				L	L	М	М		М
CO4		М						L	М	L	L	М	М		М
CO5				L		М	S	М		S	М	S			М
S- Stro	ng; M-	Medi	um; I	L-Low											

SYLLABUS:

- Importance of Personality and Skill Development.
- ✤ Interpersonal Vs Intrapersonal skill.
- Communication and barriers in Communication.
- SWOT analysis for identifying individual, group and organisation.
- ✤ Skills required to Win and influence people
- Seven essential habits of Effective people followed.
- Goal setting Individual skill to act in a group dynamics.
- Team Building
- Group Discussion
- Role Play
- Time management
- Corporate Etiquettes.
- Personality Grooming
- Body Language
- Career Guidance.
- Resume preparation
- Interview Skill
- Self Assessment

TEXT BOOK:

1. Sharma. P.C., Communication Skills and Personality Development, Nirali Prakashan Pub. Pune

REFERENCE BOOK:

1. Narula S. S, Personality Development and Communication Skills, Taxmann Publications Pvt Ltd

S.No	Name of the Faculty Designation		Department	mail id		
1	A.Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in		
2	Dr.P. Saradha	Associate Professor	English	saradhap@vmkvec.edu.in		
3	Dr.V.Sheelamary	Associate Professor	Management Studies	sheelamary@avit.ac.in		

				TRA	ININ(G ON I	PLC				Catego	ry L	Т	Р	(Credit
17M	TEEOI		(H	IANDS	5 ON 7	FRAIN	ING)				EEC	0	0	4	2	
PRE	AMBLE	1											11			
This	course in	troduc	es the	fundan	nentals	of PL	C and	system	naticall	y design	ed in syn	chrono	ous with	n ind	lustr	y needs.
DDE	DEOLIG		D	1	-1-Т-		11									
PRE	COURSE OR IECTIVES															
COL	COURSE OBJECTIVES															
1	1 To understand the basic of PLC.															
	— 1	1.0						<u> </u>								
2	2 To study and familiarize about microcontroller & Embedded systems.															
3	3 To study and design of PLC Ladder diagram .															
COU	COURSE OUTCOMES															
On tl	On the successful completion of the course, students will be able to															
C01	: Describ	e the b	asic co	oncepts	of so	ftware	tools u	ised in	PLC.				Unde	ersta	nd	
CO2	: Realize	the var	rious t <u>y</u>	ypes of	contro	ol in PI	LC app	licatio	ns.				An	alyz	e	
CO3	: Design	of vari	ous au	tomatio	c contr	ol syst	ems us	ing lad	lder dia	agram.			Cr	eate		
MAI	PPING V	VITH	PROG	RAM	ME O	UTCC	MES	AND]	PROG	RAMM	E SPEC	IFIC	OUTC	OM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	O2	PSO3
CO1	S	М	-	-	-	-	-	-	-	-	-	-	М	-	-	-
CO2	S	М	-	-	-	-	-	L	-	-	-	-	М	Ι	_	-
CO3	S	S	S	М	М	L	L	L	-	-	-	-	S	N	1	М
S- St	S- Strong; M-Medium; L-Low															
SYL	SYLLABUS															
•	Basic]	Princip	oles of	PLC L	adder	Diagra	m									

- Basic Instructions and Step Ladder Instructions
- Step Ladder Instructions
- Categories & Use of Application Instructions
- Analog IO Configuration
- Digital IO Configuration
- Application Instructions
- Loop Control / Transmission Comparison / Four Arithmetic Operation / PID
- Flow Control / Pressure Control
- Traffic light control / Logical Ladder Diagram

Reference Books:

Reference Manual

COURD				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Kannan	Assistant Professor	ECE/VMKVEC	kannan@vmkvec.edu.in
2	Mr. B.Rajasekaran	Associate Professor	ECE/VMKVEC	rajasekaran@vmkvec.edu.in

17APEE03	NATIONAL CADET CORPS	Category	L	Т	Р	Credit	
		EEC	0	0	4	2	

PREAMBLE

The training curriculum of the NCC is primarily focused towards character building, inculcating leadership qualities and skill enhancement through structured academic syllabi, practical training and opportunity of exposure/interaction beyond a cadet's immediate environment and thereby enabling them for a brighter and progressive future.

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To develop character, comradeship, discipline, secular outlook, spirit of adventure and the ideals of selfless service
	amongst the youth of the country.
2	To grante a hymon recovery of organized trained and motivated youth to may ide loadership in all walks of life and

2 To create a human resource of organized, trained and motivated youth, to provide leadership in all walks of life and always available for the service of the nation.

³ To provide a suitable environment to motivate the youth to take up a career in the Armed Forces.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explore the importance of NCC in nation building.

CO2. Develop an insight into the religion, cultural and tradition of India.

CO3. Acquaint themselves with the different types of leadership.

CO4. Analyses the need for social service for the development of a society.

CO5. Basic understanding of map sheets and map reading instruments and development of capability to use them to carry out simple map reading.

SYLLABUS

Aims and objectives of NCC, Organization, training and the NCC Song, Incentives.

Drill - Foot Drill, Arms Drill, Ceremonial Drill and Weapon Training

National Integration - Religions, culture, traditions and customs of India, National Integration: Importance and necessity, Freedom struggle and nationalist movements in India.

Personality Development and Leadership - Introduction to personality development, Self-awareness, Communication skills, Leadership traits, Time management.

Disaster Management and Civil Affairs - Civil defense organization and NDMA, Types of emergencies and natural disasters, Assistance during natural and other calamities: Floods, cyclones, earth quakes, and accidents.

Social Awareness and Community Development - Basics of social service and Its need, Rural development programmes,

Contribution of youth towards social welfare, Civic responsibility, Causes and prevention of HIV AIDS.

Health and Hygiene - Structure and function of the human body, Hygiene and sanitation, Infectious and contagious diseases and its prevention.

Environment Awareness and Conservation - Natural resources- conservation and management, Water conservation and rain water harvesting

Armed Forces - Basic organization of Armed Forces, Organisation of the Army, Badges and Ranks. Map Reading - Introduction to types of maps and conventional signs.

Map Reading -0 Scales and grid system, Topographical forms and technical terms Relief, contours and gradients, Cardinal points and types of North, Types of bearings and use of service protractor, Prismatic compass and its use and GPS.

Field Craft and Battle Craft - Judging distance, Description of ground, Recognition, description and indication of land marks and targets.

Introduction to Infantry Weapons and Equipment - Characteristics of 7.62mm SLR rifle, ammunition, fire power, Stripping, assembling and cleaning.

Military History - Biographies of renowned generals (Carriappa/Manekshaw), Indian Army war heroes.

Communication - Types of communication, Characteristics of wireless technology (mobile, Wi Fi, etc.)

TEXTBOOKS

1. Cadet Hand Book (Common Subjects), Published by DG NCC.

2. Cadet Hand Book (Specialized Subjects), Published by DG NCC.

REFERENCE BOOKS

- 1. Grooming Tomorrow's Leaders, Published by DG, NCC.
- 2. Youth in Action, Published by DG, NCC.
- 3. The Cadet, Annual Journal of the NCC.

4. Précis Issued by respective Service Headquarters on specialized subject available to PI Staff as reference material.

S.No	Name of the Facility	Designation	Department	Mail Id
1.	Lt.S.Kannan	Assistant Professor /	ECE	nccofficer@vmkvec.ac.in
		Lieutenant		
2.	Mr.S.Muthu Selven	Assistant Professor	CSE	muthuselven@avit.ac.in

17APEE04

NATIONAL SERVICE SCHEME

PREAMBLE

The service curriculum of the NSS is primarily focused towards character building, inculcating social responsibilities and human values through structured academic syllabi, practical training and opportunity of exposure/interaction beyond a volunteer's thereby enabling them for a brighter and progressive future.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To develop character, leadership, discipline and the ideals of selfless service amongst the youth of the country.
- 2 To create a human resource of organized, trained and motivated youth always available for the service of the nation.
- 3. To practice national integration and social harmony

4. To identify the needs and problems of the community and involve them in problem-solving

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Improve the quality of educated manpower by fostering social responsibility.

CO2. Develop an insight into the religion, cultural and tradition of India.

CO3. Analyses the need of social service for the development of a society.

CO4. To utilize their knowledge in finding practical solutions to individual and community problems.

SYLLABUS

INTRODUCTION TO NATIONAL SERVICE SCHEME

History and its Objectives – Emblem, Flag, Motto, Song and badge-Organizational structure of N.S.S. at National, State, University and College Levels - Advisory committee and their functions with special reference to college principal, Programme officer, N.S.S. group leader and N.S.S. volunteers in the implementation.

NATIONAL INTEGRATION AND YOUTH LEADERSHIP

Need of National integration - Various obstacles in the way of National Integration; such as caste, religion, language and provisional problems etc. Concept of family –Human values- Meaning and role of leadership- Qualities of good leadership- Role of youth in nation building-National youth policy- Youth focused and Youth led organizations

HEALTH, HYGIENE AND SANITATION AND COMMUNITY MOBILISATION

Definition, need and scope of health education- Food and Nutrition-National health programme – Healthy lifestyle- Home nursing- First aid

Mapping of Community stakeholders- Designing the message in the context of the problem and the culture of the community-Identifying methods of mobilization- Youth-adult partnership

NSS REGULAR ACTIVITIES

Introduction - NSS Regular activities - Day campus- Basics of adaptation of village/slums- Methodology of

conducting survey- Financial pattern of the scheme- Schemes of GOI-Coordination with different agencies-Maintenance of the diary

NSS SPECIAL CAMPING

Nature and its objectives- Selection of camp site and physical arrangement-Organization of N.S.S. camp through various committees and discipline in the camp -Activities to be undertaken during the N.S.S. camp -Use of the mass media in the N.S.S. activities- Collection and analysis of data- Preparation of Documentation and reports-Dissemination of documents and reports.

S.No	Name of the Facility	Designation	Department	Mail Id		
1.	Mr.S.KRISHNARAJ	Asst. Professor	Chemistry/VMKVEC	srajkrishna85@gmail.com		
2.	Mr.C.THANGAVEL	Asso. Professor	Mechanical/VMKVEC	ceeteemech@gmail.com		
3.	Dr.B. PRABASHEELA	Asso. Professor	Biotechnology/ AVIT	prabasheela@avit.ac.in		

174	PEE05	SPOR	XTS AND GAMES INTER		Category	L	Т	Р	Credit			
1//1	LLUJ	С	OLLEGIATE LEVEL		CC	0	0	2	1			
PREA	MBLE					1		1	1			
To pro	duce goo	d players, by pr	oviding Hi-Tech Sports facilities	to the	Students an	d to be the	e top col	lege for S	ports in			
additio	n to acade	emics in several d	lisciplines of science and engineering	ng.			•	0	•			
PRER	EQUISIT	TE - NIL										
COUR	COURSE OBJECTIVES											
1	Demons	strate an understa	nding of the principles and concept	ts relat	ted to a variet	ty of physic	cal activit	ies				
2	Recall a	nd understand the	e importance of physical activity to	a hea	lthy lifestyle							
3	Display	acquired motor s	kills necessary to perform a variety	of ph	nysical activit	ties						
4	Apply tactics, strategies and rules in both individual and group situations											
5	5 Recognize and inspire the physical and mental benefits of sports activities.											
COUR	COURSE OUTCOMES											
On th	ne success	ful completion of	f the course, students will be able to	С								
CO1.R	espect the	emselves and corr	elate their social and physical envi	ronme	ent							
CO2.St	upport and	d encourage other	rs (towards a positive working envi	ronme	ent)							
CO3.D	evelop at	titudes and strateg	gies that enhance their relationship	with c	others							
CO4.S	how sensi	tivity to their own	n and different cultures.									
CO5.Tand con	ake respor nmitment	nsibility for their	own learning process and demonst	rate ei	ngagement w	ith the activ	vity, show	ing enthu	siasm			
LIST (OF EVEN	NTS ORGANIZI	ED:									
Intramural Activities. (Inter Collegiate tournaments and open college tournaments) Training and Coaching for inter collegiate tournaments. Conducting Inter class, inter-department tournament. Enrolment of students in the concerned sports and games.												
COUR	SE DESI	GNERS										
S.No.	Name o	f the Faculty	Designation	Dep	oartment	Μ	ail ID					
1	Mr.N.Ja	iyaraman	Director of Physical Education	Phy	sical Educati	on ja	yaraman(@vmkvec.	edu.in			
2	Mr.P.N	aveen	Director of Physical Education	Phy	sical Educati	on na	veen@vi	nkvec.edu	in			

17APEE	PEE06	SPORTS AN	D GAMES INTER UNIVERSI	ТҮ	Category	L	Т	Р	Credit	
1771	LLUU		LEVEL		CC	0	0	4	2	
PREA	MBLE					L	1			
To pro	duce goo	d players, by pro	oviding Hi-Tech Sports facilities to	o the	Students an	d to be the	e top col	lege for S	ports in	
PRER	EOUISIT	TE - NIL	isciplines of science and engineerin	5.						
COUR	COURSE OBJECTIVES									
1	1 Demonstrate an understanding of the principles and concepts related to a variety of physical activities									
2	Recall a	nd understand the	e importance of physical activity to	a hea	lthy lifestyle					
3	Display	acquired motor s	kills necessary to perform a variety	of ph	ysical activit	ies				
4	Apply tactics, strategies and rules in both individual and group situations									
5	5 Recognize and inspire the physical and mental benefits of sports activities.									
COUR	COURSE OUTCOMES									
On th	On the successful completion of the course, students will be able to									
CO1.R	espect the	emselves and corr	elate their social and physical enviro	onme	ent					
CO2.St	upport and	d encourage other	rs (towards a positive working envir	onme	ent)					
CO3.D	evelop at	titudes and strateg	gies that enhance their relationship v	with o	others					
CO4.S	how sensi	tivity to their own	n and different cultures.							
CO5.T	ake respo	nsibility for their	own learning process and demonstra	ate er	ngagement w	ith the activ	vity, show	ving enthu	siasm	
and con	nmitment									
	JF EVEP	NIS ORGANIZI								
Extram	ural Activ	vities. (District, S	tate & Open level Tournaments)							
Trainin	g and Co	aching for inter c	ollegiate tournaments.							
Conduc	cting Inter	class, inter-depa	rtment tournament.							
Enrolm	ent of stu	dents in the conc	erned sports and games.							
COURSE DESIGNERS										
S.No.	Name o	f the Faculty	Designation	Dep	artment	Μ	ail ID			
1	Mr.N.Ja	iyaraman	Director of Physical Education	Phy	sical Educati	on ja	yaraman@	@vmkvec.	edu.in	
2	Mr.P.N	aveen	Director of Physical Education	Phy	sical Educati	on na	veen@vr	nkvec.edu	.in	

17AF	PEE07	SPORTS A	ND GAMES ALL INDIA INTER UNIVERSITY I EVEL	۲	Category	L	Т	Р	Credit		
					CC	0	0	6	3		
PREA	MBLE										
To pro	duce goo	d players, by pr	oviding Hi-Tech Sports facilities	to the	Students an	d to be the	e top col	lege for S	ports in		
additio	n to acade	emics in several c	lisciplines of science and engineering	ng.							
PRER	EQUISIT	E - NIL									
COUR	SE OBJI	ECTIVES									
1	1 Demonstrate an understanding of the principles and concepts related to a variety of physical activities										
2	2 Recall and understand the importance of physical activity to a healthy lifestyle										
3	3 Display acquired motor skills necessary to perform a variety of physical activities										
4	Apply ta	actics, strategies	and rules in both individual and gro	up situ	ations						
5	Recogni	ize and inspire th	e physical and mental benefits of sp	ports a	ctivities.						
COUR	COURSE OUTCOMES										
On th	On the successful completion of the course, students will be able to										
CO1.R	espect the	emselves and corr	relate their social and physical envir	ronmer	nt						
CO2.St	upport and	d encourage other	rs (towards a positive working envi	ronme	nt)						
CO3.D	evelop at	titudes and strate	gies that enhance their relationship	with of	thers						
CO4.SI	how sensi	tivity to their ow	n and different cultures.								
CO5.Ta and cor	ake respo nmitment	nsibility for their	own learning process and demons	strate e	engagement	with the ac	ctivity, sh	owing ent	husiasm		
I IST ()F FVFN	JTS OBCANIZI	FD.								
	JI LVL	15 OKGANIZI									
Extram	ural Activ	vities. (South Zor	ne & All India Inter University tour	namen	ts & Nationa	al level)					
Trainin	g and Coa	aching for inter c	ollegiate tournaments.								
Conduc	cting Inter	class, inter-depa	urtment tournament.								
Enrolm	Enrolment of students in the concerned sports and games.										
COURSE DESIGNERS											
S.No.	Name o	f the Faculty	Designation	Depa	artment	М	ail ID				
1	Mr.N.Ja	yaraman	Director of Physical Education	Phys	sical Educati	on ja	yaraman(@vmkvec.	edu.in		
2	Mr.P.Na	aveen	Director of Physical Education	Phys	sical Educati	on na	veen@vi	nkvec.edu	.in		